2. Quotient d’un groupe par un sous-groupe normal
2.1 Congruence modulo un sous-groupe normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
2.2 Notion de groupe quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Premier th´eor`eme d’isomorphisme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Exemple : groupe d´eriv´e et ab´elianis´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Exemple : quotients Z/nZ................................................................. 30
3. Quelques compl´
ements
3.1 Propri´et´e universelle du groupe quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.2 Deuxi`eme th´eor`eme d’isomorphisme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Sous-groupes d’un groupe quotient et troisi`eme th´eor`eme d’isomorphisme . . . . . . . . . . . . . . . . . . . 33
3.4 Produit semi-direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Chapitre 3. – Anneaux : les premi`eres notions
1. Anneaux et sous-anneaux
1.1 Notion d’anneau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.2 Sous-anneau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.3 Groupe des unit´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4 Corps.......................................................................................40
1.5 Int´egrit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6 Morphisme d’anneaux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
1.7 Corps des fractions d’un anneau int`egre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.8 Anneaux produits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
2. Id´
eaux
2.1 Notion d’id´eal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Id´eal principal, id´eal engendr´e par une partie, somme d’id´eaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3 Produit d’id´eaux, op´erations sur les id´eaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4 Caract´eristique d’un anneau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
3. Anneaux quotients
3.1 Quotient d’un anneau par un id´eal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Id´eaux premiers, id´eaux maximaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Th´eor`eme de Krull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4. Anneaux euclidiens, anneaux principaux
4.1 Multiples, diviseurs et id´eaux principaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Notion d’anneau euclidien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Notion d’anneau principal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Chapitre 4. – Anneaux : divisibilit´e, arithm´etique
1. Notions g´
en´
erales
1.1 Multiples et diviseurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.2 Elements associ´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.3 Elements irr´eductibles, ´el´ements premiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.4 Elements premiers entre eux, plus grand commun diviseur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2. Arithm´
etique dans les anneaux principaux
2.1 Pgcd, th´eor`eme de B´ezout et applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2 Cas particulier des anneaux euclidiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
3. Arithm´
etique dans les anneaux factoriels
3.1 Notion d’anneau factoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Divisibilit´e dans les anneaux factoriels, lemme de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4. Factorialit´
e des anneaux de polynˆ
omes
4.1 Irr´eductibilit´e des polynˆomes `a coefficients dans un anneau factoriel . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Premi`ere application : crit`ere d’irr´eductibilit´e d’Eisenstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Seconde application : factorialit´e de l’anneau des polynˆomes sur un anneau factoriel . . . . . . . . . 67