X k Z X k
F X
H0
Z(X, F ) = ker H0(X, F )→H0(X\Z, F )
Z
Γc(X, F ) = [
Z
H0
Z(X, F )
Γc(X, −)
X k k
Γc(X, F ) = ⊕x∈X0H0
x(X, F )X0
RpΓc(X, F ) = ⊕x∈X0Hp
x(X, F )X
R1ΓcR2Γc
k X k z ∈X n
k
H0
x(X, Z/nZ) = 0
H1
x(X, Z/nZ) = 0
H2
x(X, Z/nZ)'Z/nZ
M=Z/nZe
X X x
k Hp
x(X, M) = Hp(e
X, M)
p X e
X
K U =X\x= Spec(K)
x →X← U
0−→ H0
x(X, M)−→ H0(X, M)−→ H0(U, M)−→ H1
x(X, M)−→ H1(X, M)−→
−→ H1(U, M)→H2
x(X, M)−→ H2(X, M)−→ . . .
Xcd(X)=0 H1(X, M) = H2(X, M)=0
M H0(X, M) = H0(U, M) = M
H0
x(X, M) = H1
x(X, M)=0
H2
x(X, M) = H1(U, M) = K∗/K∗n'Z/nZ
H1
x(X, Z/nZ) = Z/nZ
π:U→S
j:U →X π :X→S π =π◦j
Uj//
π
B
B
B
B
B
B
B
BX
π
S