Classe de MPSI Année 2014-2015
DEVOIR LIBRE DE SCIENCES PHYSIQUE N° 11
Elément et cristallographie
1.1. Un des isotopes de l'élément fer a pour représentation : ܨ݁
ଶ଺
ହ଺
1.1.1. Donner la signification de chacun des nombres accolés ci-
dessus au symbole Fe, pour cet isotope
1.1.2. Indiquer la configuration électronique de l'atome de fer à l'état
fondamental. On indiquera quelles sont les gles classiques suivies pour
effectuer cette détermination.
1.1.3. Indiquer le nombre et la localisation des électrons de valence et
préciser les configurations électroniques des ions ferreux et ferrique.
1.1.4. A quel groupe appartient le fer ? Pourquoi ?
1.1.5. La masse atomique exacte du fer est de 55,847 g.mol'
1
.
Expliquer.
1.2. Le fer existe sous trois variétés cubiques polymorphiques. Pour des
températures comprises entre 910°C et 1400 °C, la variété cristalline stable
(notée ܨ݁ ou austénite) est de structure cubique face centrée.
1.2.1. Représenter la maille élémentaire de l'austénite
1.2.2. On suppose que les atomes de fer sont des sphères indéformables
et que la structure est compacte. Donner la définition et déterminer
l'expression littérale de la compacité de l’austénite. La calculer.
1.2.3. Donner le nombre et la position des sites tétraédriques présents
dans cette maille.
1.2.4. Donner le nombre et la position des sites octaédriques présents
dans cette maille.
1.2.5. Quelle est la relation entre le nombre de sites octaédriques et de
sites tétraédriques dans cette structure ?
1.3. La variété cristalline stable à des températures inférieures à 910°C,
(notée ܨ݁) est de structure cubique centrée.
1.3.1. Représenter la maille élémentaire du ܨ݁.
1.3.2. Calculer sa compacité.
1.3.3. Indiquer le nombre et la position des sites octaédriques présents
dans cette maille.
1.3.4. L'austénite peut dissoudre une proportion notable de carbone
(jusqu'à 2 % en masse) et former des aciers, alors que la varté ܨ݁ n'en
accommode que 0,02 % (en masse). Les atomes de carbone sont insérés dans
les sites octaédriques du fer de rayon R
i
. Les paramètres de maille pour le
ܨ݁ et l’austénite valent respectivement 286,6 pm et 359,1 pm. La taille des
sites octaédriques en fonction du paramètre de maille a est égale à 0,147 × ܽ
pour une structure cubique à face centrée et à 0.067 × ܽ pour une structure
cubique centrée.
1.4. Pourquoi les aciers sont obtenus principalement à partir de la var ausnite
?
1.5.
1.5.1. Donner l'expression littérale et numérique de la masse
volumique du ܨ݁ et de l'austénite en fonction du paramètre de maille en
kg.m
-3
.
1.5.2. Les densités des variétés ܨ݁, ܨ݁, et ܨ݁, stable entre 1400°C
et la température de fusion et cristallisant dans une maille cubique, sont
identiques. Commenter.
Thermodynamique
1. Le gaz de Van der Waals
2. Gaz de Claussius
2.1. L’équation d’état d’un gaz de Clausius est :
RTbV
bVT
a
P=
+
+)(
)(
2
pour une mole de gaz.
Rétablir cette équation pour n moles.
3. Gaz de Dieterici
3.1. La variation élémentaire dP s’écrit :
dT
RTV
a
e
bV
R
dV
RTV
a
bV
e
bV
RT
dP
RTV
a
RTV
a
+
+
+
=
1
1
2
Retrouver l’équation d’état de ce gaz.
3.2. Dans le domaine de faibles pressions, il existe deux infiniment
petits. Lesquels ? Montrer alors que dans l’équation devient :
+= V
A
RTPV 1
à l’ordre 1.
Calculer A.
Pour quelle température T, ce gaz correspond à un gaz parfait ?
Hydrogène dans un cylindre
Un cylindre fermé à ses deux extrémités, d'axe horizontal, est divisé
en deux compartiments A et B par un piston mobile sans frottement. Les
parois du cylindre sont adiabatiques. On néglige la capacité calorifique du
cylindre et du piston.
Chaque compartiment renferme le même nombre n de moles
d'hydrogène assimilable à un gaz parfait dont les capacités calorifiques
molaires Cp pression constante) et Cv volume constant) sont constantes.
On appelle R la constante molaire des gaz parfaits et γ le rapport Cp / Cv .
On donne : n = 0,4 mol; R = 8,31 J mol-1 K-1; γ= 1,40.
A - Piston faiblement conducteur de la chaleur
On connaît l'état initial :
Pression Volum
e
Températur
e
Compartiment A P
1
=10
5
Pa V
A1
T
A1
=400K
Compartiment B P
1
=10
5
Pa V
B1
T
B1
=250K
Après un certain temps, le piston étant faiblement conducteur de la
chaleur, tout l'hydrogène dans le cylindre est à la même température: soit T2
cette température finale. L'état final est donc caractérisé par:
Pression Volum
e
Températur
e
Compartiment A P
2
V
A2
T
2
Compartiment B P
2
V
B2
T
2
A B
On suppose que l'hydrogène contenu dans le compartiment A et B a
subi une transformation quasi-statique.
1°-a - Déterminer la variation d'énergie interne U de tout l'hydrogène
contenu dans le cylindre.
1°-b- Déterminer la température finale T2 .
2°-a- Déterminer la pression finale P2 de l'hydrogène dans le cylindre.
2°-b- Montrer que l'hydrogène dans le compartiment A et l'hydrogène dans
le compartiment B ont subi une transformation isobare.
3°-a- Déterminer le signe de la variation d'entropie S de tout l'hydrogène
contenu dans le cylindre. Justifier soigneusement la réponse.
3°-b- Calculer S
B - Piston adiabatique et muni d'une tige
Le piston est maintenant adiabatique ; il est de plus muni d'une tige
sur laquelle un opérateur exerce une force F constante.
On connaît l'état initial (la force F étant telle que le piston est en
équilibre) :
Pression Volum
e
Températur
e
Compartiment A P’
A1
=4.10
5
Pa
V’
A1
T’
A1
=842K
Compartiment B P
B1
=10
5
Pa
V’
B1
T’
B1
=439,5
K
L'opérateur fait décroître très lentement la norme de F, de sa valeur
initiale jusqu'à zéro; c'est alors l'état final :
Pression Volum
e
Températur
e
Compartiment A P’
2
V’
A2
T’
A2
Compartiment B P’
2
V’
B2
T’
B2
1°-a- Déterminer la pression finale P'2 sous forme littérale.
1°-b- Calculer numériquement P'2 .
1°-c- Calculer numériquement T'A2 et T'B2.
2°- Calculer numériquement le travail de la force F au cours de cette
transformation.
3°- Déterminer les variations d'entropie S'A (de l'hydrogène dans le
compartiment A), S'B (de l'hydrogène dans le compartiment B) et S' (de
tout l'hydrogène contenu dans le cylindre).
C - Piston adiabatique et résistance électrique
Le piston est toujours adiabatique. On place une résistance électrique
dans le compartiment A. On connaît l'état initial :
Pression Volum
e
Températur
e
Compartiment A
P’’
1
=8,61.10
4
Pa
V’’
A1
T’’
A1
=280K
Compartiment B
P’’
1
=8,61.10
4
Pa
V’’
B1
T’’
B1
=280K
On relie la résistance électrique à un générateur électrique; cette
résistance électrique dégage donc de la chaleur par effet Joule.
On suppose que l'hydrogène contenu dans les compartiments A et B
a subit une transformation quasi-statique.
On débranche la résistance électrique du générateur lorsque la
pression de l'hydrogène dans le compartiment A est égale à : P''2 =
2,5.105 Pa
A B
F
A B
R
L'état final est donc caractérisé par :
Pression Volum
e
Températur
e
Compartiment
A
P’’
2
=2,5.10
5
Pa
V’’
A2
T’’
A2
Compartiment
B
P’’
2
=2,5.10
5
Pa
V’’
B2
T’’
B2
1°-a- Calculer numériquement T''B2.
1°-b- Calculer numériquement T''A2.
2- Calculer la chaleur Q dégagée par la résistance électrique au cours de cette
transformation.
Piston
Un cylindre fermé, à parois adiabatiques, est divisé en deux parties étanches
de même volume
33
m10.25
=
i
V
par un piston diatherme, de capacité
thermique négligeable, initialement bloqué. Les deux compartiments
contiennent le même gaz parfait à la même température K290=
i
T et aux
pressions respectives
Pa10
5
1
=
i
p
et
12
3
ii
pp =. On donne :
Constante des gaz parfaits :
11
K.mol.J31,8
=R
4,1/ ==
Vp
cc
γ
On libère le piston qui se déplace en translation sans frottement et finit par
s'immobiliser dans une nouvelle position d'équilibre.
1. Calculer la température finale
f
T
des gaz dans les compartiments (1) et
(2).
2. Calculer la pression finale
f
p
des gaz dans les compartiments (1) et (2).
3. Calculer le volume final
1f
V
du gaz dans le compartiment (1).
4. Calculer la variation d'enthalpie
H
du système.
Etat initial
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !