Devoir Surveillé n°1
Techniques Analogiques
Durée 2h
Geii1 – S1
01/10/2007
Aucun document autorisé. Calculatrices autorisées.
Il sera tenu compte de la présentation de votre copie dans l'évaluation.
A) Applications du cours
1) Donner l'expression de U en
fonction des éléments des deux
schémas ci-contre.
(a)
R
I
U
(b)
I
U
+
E
(a)
U=R.I
(b)
U=E
2) Déterminer l'expression, en fonction de R1, R2, R3 et
R4, de la résistance équivalente vue entre les points A et
B puis donner sa valeur numérique.
R1 1kR2 10kR3 6,8k
R4 8,2k
A B
R1 et R2 sont en parallèle. La résistance résultante R12 est en série avec R4. Enfin, la résistance
équivalente à l'association R124 est en parallèle avec R3. On obtient ainsi :
R12=R1.R2
R1R2=909
;
R124=R12R4=7,45 k
;
Réquivalente=R124.R3
R124R3=3,56 k
3) Dans le montage ci-contre :
a) quelles sont l'expression et la valeur du courant I débité par le générateur de
tension ?
b) quelles sont l'expression et la valeur du courant circulant dans la résistance
R1 ?
c) quelles sont l'expression et la valeur de la puissance totale dissipée dans
l'ensemble des résistances ?
d) quelles sont l'expression et la valeur de la puissance dissipée dans la résistance
R1 ?
+
E
5V
R1
1kR2
1k
I
a) R1 et R2 sont en parallèle. La résistance équivalente à cette association,
R12=R1.R2
R1R2=500
, voit
une tension E à ses bornes. Avec les conventions de signes du schéma :
b) Les résistances R1 et R2 forment un pont diviseur de courant. On peut donc écrire :
IR1=I. R2
R1R2=5mA
c) Par définition, la puissance dissipée dans une résistance R, placée sous une tension U et parcourue par
un courant I, vaut
P=U.I =U2
R=R.I 2
.
La résistance équivalente à l'ensemble des résistances du montage est ici R12 et elle voit une tension E à
ses bornes et est parcourue par la courant I calculé en a). On peut donc écrire que
Ptotale=E.I=E2
R12 =R12 .I2=50 mW
d) La résistance R1 est également placée sous une tension E, mais elle est parcourue par la courant IR1
calculé en b). De ce fait :
PR1=E.IR1=E2
R1=R1.IR1
2=25 mW
S. Long 1/4
4) On cherche le générateur de Thévenin équivalent au montage
suivant vu entre le point A et la masse.
a) Déterminer la résistance Rth de ce générateur et expliquant
votre démarche.
b) A quelle différence de potentiel correspond le générateur de
tension parfait Eth du générateur équivalent ? Déterminer la
tension Eth du générateur de Thévenin à l'aide de la loi des
noeuds (également appelée théorème de Millman).
c) Dessiner le générateur de Thévenin équivalent.
+
E1
R1
+
E2
R2
R3
R4
Charge
A
a) Pour calculer la résistance Rth du générateur de Thévenin
équivalent, on éteint les sources (une source de tension est
remplacée par un court circuit et une source de courant par un
circuit ouvert) et on calcule la résistance équivalente vue entre A et
la masse. Le schéma correspondant est donné ci-contre.
R1, R2 et R3 sont placées en parallèle, puis R4 en série avec cette
première association :
Rth=1
R11
R21
R3
1
R4
R1
R2
R3
R4 A
b) Eth correspond à la tension UAM à vide, c'est à dire lorsque le
montage est en circuit ouvert ou encore que le courant qu'il débite
est nul.
Dans notre cas, le courant I dans R4 est nul. On peut donc écrire
que UAB = 0V et donc que Eth = UAM= UBM= VB– VM= VB.
Appliquons le théorème de Millman au noeud B en remarquant que
seulement trois branches connectées à ce noeud sont parcourues
par du courant :
+
E1
R1
+
E2
R2
R3
R4 AI=0A
Eth
B
VB=Eth=
E1
R10
R3 E2
R2
1
R1 1
R31
R2
=E1.R2 .R3E2. R1. R3
R1.R2R2 .R3R1.R3
c) Le générateur de Thévenin équivalent au schéma de l'énoncé est
donc celui indiqué ci-contre avec
Eth=E1.R2.R3E2. R1. R3
R1.R2R2.R3R1.R3
et
Rth= 1
R11
R2 1
R3
1
R4
+
Eth
Rth
Charge
A
5) On cherche le générateur de Norton équivalent au montage suivant
vu entre le point A et la masse.
a) Déterminer la résistance Rn de ce générateur et expliquant
votre démarche.
b) A quel courant correspond le générateur de courant parfait
In du générateur équivalent ? Déterminer le courant In du
générateur de Norton à l'aide du théorème de superposition.
c) Dessiner le générateur de Norton équivalent.
+
E1
R1
+
E2
R2
R3
A
Charge
a) Pour calculer la résistance Rn du générateur de Norton
équivalent, on éteint les sources (une source de tension est
remplacée par un court circuit et une source de courant par un
circuit ouvert) et on calcule la résistance équivalente vue entre A et
la masse. Le schéma correspondant est donné ci-contre.
R1, R2 et R3 sont placées en parallèle,
Rn= 1
R1 1
R2 1
R3
1
R1
R2
R3
A
b) In correspond au courant de court-circuit, c'est à dire lorsque la charge est une résistance nulle ou
encore que la tension aux bornes du montage (UAM) est nulle.
Appliquons le théorème de superposition.
+
E1
R1
+
E2
R2
R3
A
In
+
E1
R1
R2
R3
A
In1
R1
+
E2
R2
R3
A
In2
S. Long 2/4
Commençons par éteindre la source E2. On a alors R2 et R3 qui sont court-circuitées et
In1=E1
R1
Dans un second temps, éteignions E1. On a alors R1 et R3 qui sont court-
circuitées et
In2=E2
R2
On peut alors conclure que
In1In2=In.=E1
R1E2
R2
c) Le générateur de Norton équivalent au schéma de l'énoncé est donc celui
indiqué ci-contre avec et
In.=E1
R1 E2
R2
et
Rn=1
R11
R2 1
R3
1
In
Rn
A
Charge
B) Convertisseur Numérique Analogique (CNA) R/2R
Un convertisseur numérique-analogique est un composant qui permet de transformer une donnée numérique binaire,
codée sur un certain nombre de bit, en une grandeur analogique.
Nous allons nous intéresser ici à la structure d'un CNA R/2R qui met en oeuvre un réseau de résistances n'ayant que
2 valeurs possibles. Nous nous limiterons à l'étude d'un CNA 4 bits.
La structure du convertisseur est alors la suivante :
++
-
Vs
2R
R R R
2R 2R2R2R2R
10 101010
+
E
a3 a2 a1 a0
Information binaire : commande des interrupteurs
IIA
I1
I2 I0I3
IB IC
Is
Ir
R
Les interrupteurs sont commandés par les bits : un bit de niveau haut (a=1) positionne l'interrupteur sur sa position
1, un bit de niveau bas (a=0) sur sa position 0.
On considère que l'amplificateur opérationnel est idéal et qu'il fonctionne en régime linéaire.
1) Quel est le potentiel des points « 1 » des interrupteurs ? La position de ces derniers influence-t-elle les potentiels
et les courants du montage ?
Les points « 1 » des interrupteurs sont connectés à l'entrée « - » d'un amplificateur opérationnel idéal et
en régime linéaire et dont l'entrée « + » est connectée à la masse. De ce fait, comme V- = V+ = 0V, les
points « 1 » des interrupteurs ont un potentiel nul, tout comme les points « 0 ». La position de ces
derniers n'influence donc pas les potentiels et les courants du montage.
2) Pour le mot binaire « 0011 » dessiner le schéma équivalent du réseau R/2R. Quelle est alors la résistance
équivalente au réseau vue par le générateur de tension E ?
R R R
2R 2R2R2R2R
1 100
IIA
I1I2 I0I3
IB IC
R
V- = OV R
2R
R
2R
R
2R
Pour calculer la résistance équivalent au réseau, on
part de l'extrémité la plus à droite de celui-ci (la
plus éloignée des points entre lesquels cette
résistance est recherchée).
On trouve donc, dans un premier temps 2
résistances 2R en parallèle qui sont équivalentes à
1 résistance R. Celle-ci est en série avec R, ce qui
résulte en 1 résistance 2R, puis en parallèle avec
2R, on obtient donc encore une résistance R en
série avec R puis en parallèle avec 2R... Au final,
la résistance équivalente est donc 2R.
3) A partir du résultat de la question 2, exprimer le courant I en fonction de E et de R.
I=E
2R
puisque le réseau de résistance peut se réduire à une résistance équivalente valant 2R lorsqu'on
se place au niveau du générateur.
S. Long 3/4
4) a) Exprimer I0 en fonction de IC.
b) Exprimer IC et I1 en fonction de IB.
c) Exprimer IB et I2 en fonction de IA.
d) Exprimer enfin IA et I3 en fonction de I.
a) le courant Ic est divisé entre les deux résistances 2R. On peut donc écrire :
I0=IC .2R
2R2R =IC
2
b) de la même manière, le courant IB est divisé entre 2 résistances 2R, l'une étant présente telle quelle
et parcourue par I1, l'autre étant équivalente à 3 résistances. Ainsi :
I1=IC =IB
2
c) le même constat peut-être effectué pour les deux noeuds restants :
I2=IB=IA
2
et
d)
I3=IA=I
2
5) A l'aide de la question précédente déterminer successivement les expressions de I3, I2, I1 et I0 en fonction de I.
Nous avons déjà établi que
I3=I
2
au 4.d.
En injectant la relation entre IA et I du 4.d dans le résultat du 4.c, on peut écrire que
I2=I
4
.
De la même manière avec le résultat précédent et celui du 4c on obtient
I1=I
8
.
Enfin, en utilisant la réponse à la question 4a :
I0=I
16
6) Montrer que le courant Is peut se mettre sous la forme :
Is=I
16 ×a0×20a1×21a2×22a3×23
Le courant Is est la somme des courants qui parcourent les branches dont les interrupteurs sont en
position 1. Un interrupteur est en position 1 si le bit qui le commande vaut 1. En outre, un bit qui ne vaut
pas 1 vaut 0.
On peut donc écrire que :
Is=a0×I0a1×I1a2×I2a3×I3
En utilisant les résultats de la question 5 on obtient :
Is=I× a0
16 a1
8a2
4a3
2
ou encore le résultat
recherché :
Is=I
16 ×a0×20a1×21a2×22a3×23
7) Exprimer Ir en fonction de I et en déduire la relation entre Vs et I puis montrer que
Vs=E
16 ×a0×20a1×21a2×22a3×23
Le courant entrant sur l'entrée « - » d'un amplificateur opérationnel est nul. On peut donc écrire que
Ir=Is=I
16 ×a0×20a1×21a2×22a3×23
.
Par ailleurs, la différence de potentiel entre les deux entrées de l'amplificateur est nulle. On à donc
V- = V+ = 0V. On retrouve donc la tension (Vs 0) aux bornes de la résistance de contre réaction 2R et
donc Vs = -2R.Ir. Comme nous avons établi à la question 3) que I = E/2R, on peut écrire que :
Vs=E
16 ×a0×20a1×21a2×22a3×23
8) Quelle valeur de tension Vs correspond au mot binaire « 0011 » si on choisi E = 5V ?
Le mot binaire « 0011 » correspond à a3=0, a2=0, a1=1 et a0=1. En faisant l'application numérique :
Vs=5
16 ×1×201×210×220×23=−0,97 V
S. Long 4/4
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !