142
J.
ANDHADE
SYNCHRONISATION PAR LE FER DOUX
I.
C'est en 1847 que FOUCAULT a prévu, avec une grande généralité, le phénomène
de la synchronisation des horloges
;
mais, à ma connaissance du moins, aucune théorie
systématique adéquate à la généralité du phénomène n'a encore été donnée.
En 1894, cependant, dans un célèbre Mémoire présenté au Congrès des électri-
ciens à Paris, CORNU a étudié et illustré expérimentalement le cas pour ainsi dire
type, le cas de première approximation des phénomènes de synchronisation': ce
phé-
nomène se produit en effet lorsqu'une force, fonction périodique du temps, vient à
troubler un mouvement pendulaire uniformément amorti
;
en d'autres termes le cas
type et simple du phénomène de synchronisation se ramène à ce théorème très simple:
P et
Q
désignant deux
coefficients
positifs, l'intégrale de
Vequation
différentielle:
dans laquelle on
suppose:
1°
Q <
2
j/P
; 2°
F(t),
fonction
périodique
du temps t
à
période
Tf,
cette
intégrale,
disons nous, ou bien sera
rigoureusement
périodique ou
bien tend
asijmpAotiquement
pour t
= nT -{-6
,
(0 ;>
0 et n oo) vers une inté-
grale périodique de période
Tr.
La fonction
¥(t)
représente en ce cas la force synchronisante qui finit prati-
quement par imposer sa période T' au mouvement (1); si la force synchronisante
était supprimée le mouvement serait uniformément amorti mais isochrone et de-
2TT
riode T
:
/*
Q!
4
II.
Pratiquement la force synchronisante est réalisée par un barreau circulaire
aimanté lié au pendule de l'horloge synchronisée et dont un pôle est mobile dans
une bobine actionnée périodiquement par l'horloge synchronisante dont les battements
143
ont pour période
Tf.
11 est recommandé que le régime de synchronisation comporte
une attraction du barreau plutôt qu'une répulsion.
Tel est le procédé de la synchronisation par un aimant permanent influencé
par un courant périodique.
Ce procédé emprunté à la prévision de FOUCAULT a été d'abord réalisé par JONES.
Dans la théorie et dans les illustrations expérimentales qu'il a faites du mou-
vement (1), CORNU a beacouup insisté sur le rôle joué par
Vamortissement
c'est à dire
par le
coefficient
Q de la résistance visqueuse, et même il a augmenté systémati-
quement ce
coefficient
Q par l'addition d'une résistance d'induction.
À quoi sert la synchronisation en dehors du service des observatoires?
CORNU m'a donné, dans une lettre, son opinion sur l'opportunité de la synchro-
nisation des horloges ; il
estimait
qu'il ne fallait synchroniser que des horloges-
diocres, celles qu'il appelait des sabots; selon lui la synchronisation peut en faire
de bonnes horloges, sauf à augmenter l'amortissement naturel de l'horloge synchro-
nisée, à le régulariser pour ainsi dire par une résistance complémentaire d'indu-
ction
;
celle ci était produite dans le procédé CORNU par un déplacement du barreau
aimanté à travers une masse isolée de cuivre rouge. Dans son Mémoire de 1894
CORNU insiste fortement sur cet amortissemment additionnel qui, dit-il, distingue com-
plètement sa méthode de celle de JONES.
En somme CORNU, n'a jamais considéré que la synchronisation par un aimant
permanent.
La règle de FOUCAULT est d'ailleurs peu explicite à cet égard, mais l'artiste
-
RITé, de Beauvais, tout en s'inspirant de la règle de FOUCAULT a réalisé des synchro-
nisation soit par l'acier aimanté, soit par le fer doux.
Il est assez curieux, d'une part, que CORNU ne se soit pas préoccupé de l'emploi
du fer doux, et que, d'autre part, ayant parfaitement senti qu'un amortissement com-
plémentaire pouvait perfectionner une horloge médiocre soumise à la synchronisation,
il n'ait pas eu l'idée d'étudier le rôle de l'échappement dans le phénomène de la
svnchronisation.
III.
En me limitant d'abord à la synchronisation par un aimant permanent j'ai, par
la méthode de la variation des constantes, complété la théorie de
CORNU
en tenant
compte du rôle de l'échappement; en considérant la partie principale E de
Veffet
de
l'échappement, qui est sensiblement indépendante de l'amplitude en cours, j'ai (Comptes
Rendus de l'Académie de Paris, Juillet 1903) obtenu le résultat suivant:
Si l'on appelle X le coefficient d'amortissement relatif au régime de synchroni-
sation,
jtt
une quantité proportionnelle au retard relatif des deux horloges,
u0
l'am-
plitude de régime, la synchronisation pourra être réalisée si
(2)
|
+
|/(i_A).
+
^<i
144
d'où l'on voit que si X et
\i
sont de petites quantités de même ordre, la condition de
sécurité pour la synchronisation sera:
en comparant cette condition à la relation qui, dans l'horloge synchronisée fonction-
nant isolément, lie son amortissement naturel
X0
à l'effet
E0
de
l'échappement,
rela-
tion
qui
est :
2 Eo
U
on aura deux moyens principaux d'assurer la condition (3).
Soit E =
E0
, X
>
X0
; soit
X
=
X0
, E
<l
E0
; l'amplitude de régime restant
d'ailleurs
uQ;
ce qui nous donne soit la règle de CORNU: aider la synchronisation par
un amortissement complémentaire, soit la règle de FOUCAULT: aider la synchroni-
sation par
Vatténuation
de l'échappement.
IV.
Dans les résultats qui sont ici fournis par l'application de la méthode de va-
riation des constantes, il y a des circonstances mathématiques intéressantes à signaler.
La méthode
d'intégration
des équations différentielles par séries de quadratures
que l'on doit à M. PICARD nous permet de nous servir ici de la méthode de la va-
riation des constantes avec une entière rigueur et d'aboutir aux résultats intéressants
que voici :
THéORèME
I. Pour des résistances fonctions de la vitesse qui suivent une
loi peu différente de la loi de résistance proportionnelle à la vitesse, on peut
toujours modifier la partie sinusoïdale du premier ordre de la force synchroni-
sante de manière à rendre le mouvement de l'horloge influencée rigoureusement
périodique, avec une période égale à celle de la force synchronisante; pour des
conditions initiales déterminées.
THéORèME
IL
Les choses étant ainsi disposées, si
l'on
modifie suffisamment
peu les conditions initiales, le mouvement du pendule influencé par la force synchro-
nisante et soumis d'ailleurs à son échappement
pjropre
va tendre effectivement vers
un régime limite périodique de période
T.
Dans les théorèmes qui précèdent, la force modificatrice du mouvement naturel
de l'horloge était rigoureusement périodique.
Or, voici un cas
extrêmement
intéressant, touyours par la même méthode
d'approximations de M. PICARD, on peut étendre les conclusions précédentes.
Supposons qu'au lieu de faire agir une force synchronisante fonction périodique
du temps, on fasse agir une force dont la valeur soit le produit d'une telle fonction
F(^)
par une force, fonction de la position du pendule
caractérisée
par sa déviation
acrtuelle
x
;
soit
¥(t)
X
tp
(x) une pareille force. Mais supposons que dans le voisinage
145
de
x =
Xi,
la fonction
<p(x)
soit à peu près constante et présente à l'égard de la
variable x soit un maximum soit un minimum.
Dans ces conditions les théorèmes précédents, avec une légère modification du
second, sont encore applicables, comme on peut d'ailleurs le pressentir intuitivement
et le démontrer rigoureusement par la méthode de M. PICARD,
En tous cas, on peut encore
régler
la fonction
¥(t)
de manière,
à
assurer
la synchronisation.
VI.
Voici, maintenant l'intérêt pratique de la remarque qui précède.
Dans la synchronisation par le fer doux, la bobine excitée périodiquement par
l'horloge-mère
exerce une induction magnétique sur une plaque de fer doux entraînée
par le pendule de l'horloge synchronisée et cette induction est fonction de la posi-
tion relative de la bobine et du pendule, c'est à dire de l'angle
d'écart
x,
l'action
magnétique est d'ailleurs proportionnelle à l'intensité du courant qui parcourt la bo-
bine,
la force synchronisante a donc bien ici la forme
¥(t).
cp(x)
signalée plus haut;
si,
pour fixer les idées, la bobine synchronisante est verticale, au point mort du
pen-
dule synchronisé, la fonction
cp(x)
aura un maximum ou un minimum pour x
=
xx,
et pour
x
=
Xi
et nous sommes alors dans les conditions où on peut appliquer
les remarques précédentes.
VII.
En résumé j'ai,
grâce
aux méthodes d'approximations successives, élargi le cas
type mais isolé, considéré d'abord par Cornu pour envisager une
infinité
de cas
voisins; en d'autres termes j'ai démontré la stabilité du phénomène de synchro-
nisation qui devient ainsi étendu aux mouvements à peu-près pendulaires, amortis
par une résistance à peu-près proportionnelle à la vitesse et soumis à une action
synchronisante agissant soit sur l'acier aimanté soit sur le fer doux.
Pour être tout à fait précis je dois ajouter que mon instrument de calcul a
été une combinaison de la méthode d'approximations de M. PICARD avec la théorie
des substitutions répétées dont l'emploi m'a été suggéré par le théorème de M.
KOENIGS
sur les substitutions répétées à une variable.
19
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !