Contextualisation
Ce document présente un exemple de mise en forme pour la réalisation d’un travail
académique. Il correspond à un exemple de résultat attendu pour le projet Word du cours
d’Administration. Pour plus d’information sur le travail demandé, se référer à l’énoncé du
projet.
Le contenu de ce document est une adaptation libre de divers extraits trouvés sur Internet
(principalement cet article disponible sur Wikipedia).
Définition
Le terme intelligence artificielle, créé par John McCarthy, est souvent abrégé par le sigle IA (ou
AI en anglais, pour Artificial Intelligence). Il est défini par l’un de ses créateurs, comme :
« ... la construction de programmes informatiques qui s’adonnent à des tâches qui sont, pour
l’instant, accomplies de façon plus satisfaisante par des êtres humains car elles demandent des
processus mentaux de haut niveau tels que : l’apprentissage perceptuel, l’organisation de la
mémoire et le raisonnement critique. »
Marvin Lee Minsky
On y trouve donc le côté artificiel atteint par l'usage des ordinateurs ou de processus
électroniques élaborés et le côté intelligence associé à son but d'imiter le comportement. Cette
imitation peut se faire dans le raisonnement, par exemple dans les jeux ou la pratique de
mathématiques, dans la compréhension des langues naturelles, dans la perception : visuelle
(interprétation des images et des scènes), auditive (compréhension du langage parlé) ou par
d'autres capteurs, dans la commande d'un robot dans un milieu inconnu ou hostile.
Même si elles respectent globalement la définition de Minsky, il existe un certain nombre de
définitions différentes de l'IA qui varient sur deux points fondamentaux :
Les définitions qui lient la définition de l'IA à un aspect humain de l'intelligence, et celles qui la
lient à un modèle idéal d'intelligence, non forcément humaine, nommée rationalité.
Les définitions qui insistent sur le fait que l'IA a pour but d'avoir toutes les apparences de
l'intelligence (humaine ou rationnelle), et celles qui insistent sur le fait que le fonctionnement
interne du système d'IA doit ressembler également à celui de l'être humain ou être rationnel.
Histoire
L'origine de l'intelligence artificielle se trouve probablement dans l'article d'Alan Turing
COMPUTING MACHINERY AND INTELLIGENCE (1950), où Turing explore le problème et propose
une expérience maintenant connue sous le nom de test de Turing dans une tentative de
définition d'un standard permettant de qualifier une machine de consciente. Il développe ces
idées dans plusieurs forums et conférences :
L'intelligence de la machine, une idée hérétique, en 1951
Les calculateurs numériques peuvent-ils penser ?, en 1951
Les ordinateurs peuvent-ils penser?, en 1952
On considère que l'intelligence artificielle, en tant que domaine de recherche, a été créée à la
conférence qui s'est tenue sur le campus de Dartmouth College pendant l'été 1956 à laquelle
assistaient ceux qui vont marquer la discipline. Ensuite l'intelligence artificielle se développe
surtout aux États-Unis à l'université Stanford sous l'impulsion de John McCarthy, au MIT sous
celle de Marvin Minsky, à l'université Carnegie-Mellon sous celle de Allen Newell et Herbert
Simon et à l'université d'Édimbourg sous celle de Donald Michie.
Alan Turing (1912-1954) est considéré comme le fondateur de la science informatique.
Intelligence artificielle forte
Définition
Le concept d’intelligence artificielle forte fait référence à une machine capable non seulement
de produire un comportement intelligent, mais d’éprouver une impression d'une réelle
conscience de soi, de vrais sentiments (quoi qu’on puisse mettre derrière ces mots), et une
compréhension de ses propres raisonnements.
L’intelligence artificielle forte a servi de moteur à la discipline, mais a également suscité de
nombreux débats. En se fondant sur le constat que la conscience a un support biologique et
donc matériel, les scientifiques ne voient généralement pas d’obstacle de principe à créer un
jour une intelligence consciente sur un support matériel autre que biologique. Selon les tenants
de l'IA forte, si à l'heure actuelle il n'y a pas d'ordinateurs ou de robots aussi intelligents que
l'être humain, ce n'est pas un problème d'outil mais de conception. Il n'y aurait aucune limite
fonctionnelle (un ordinateur est une machine de Turing universelle avec pour seules limites les
limites de la calculabilité), il n'y aurait que des limites liées à l'aptitude humaine à concevoir les
logiciels appropriés (programme, base de données...). Elle permet notamment de modéliser des
idées abstraites.
Estimation de faisabilité
On peut être tenté de comparer la capacité de traitement de l'information d'un cerveau humain
à celle d'un ordinateur pour estimer la faisabilité d'une IA forte. Il s'agit cependant d'un exercice
purement spéculatif, et la pertinence de cette comparaison n'est pas établie. Cette estimation
très grossière est surtout destinée à préciser les ordres de grandeur en présence.
Un ordinateur typique de 1970 effectuait 107 opérations logiques par seconde, et occupait donc
- géométriquement - une sorte de milieu entre une balance de Roberval (1 opération logique
par seconde) et le cerveau humain (grossièrement 2 × 1014 opérations logiques par seconde,
car formé de 2 × 1012 neurones ne pouvant chacun commuter plus de 100 fois par seconde);
l'estimation d'un constructeur est que la puissance brute du cerveau humain serait égalable en
2019, sous réserve que la loi de Moore s'applique jusque-là. En 2005, un microprocesseur
typique traite 64 bits en parallèle (128 dans le cas de machines à double cœur) à une vitesse
typique de 2 GHz, ce qui place en puissance brute dans les 1011 opérations logiques par
seconde. En ce qui concerne ces machines destinées au particulier, l'écart s'est donc nettement
réduit. En ce qui concerne les machines comme Blue Gene, il a même changé de sens.
Le matériel serait donc maintenant présent. Du logiciel à la mesure de ce matériel resterait à
développer. En effet, l'important n'est pas de raisonner plus vite, en traitant plus de données,
ou en mémorisant plus de choses que le cerveau humain, l'important est de traiter les
informations de manière appropriée.
L'IA souligne la difficulté à expliciter toutes les connaissances utiles à la résolution d'un
problème complexe. Certaines connaissances dites implicites sont acquises par l'expérience et
mal formalisables. Par exemple, qu'est-ce qui distingue un visage familier de deux cents autres ?
Nous ne savons pas toujours clairement l'exprimer. L'apprentissage de ces connaissances
implicites par l'expérience est exploité depuis les années 1980 (par les réseaux de neurones par
exemple). Néanmoins, un autre type de complexité apparaît : la complexité structurelle.
Comment mettre en relation des modules spécialisés pour traiter un certain type
d'informations, par exemple un système de reconnaissance des formes visuelles, un système de
reconnaissance de la parole, un système lié à la motivation, à la coordination motrice, au
langage, etc. En revanche, une fois un système cognitif conçu et son apprentissage par
l'expérience réalisé, l'intelligence correspondante peut être distribuée en un grand nombre
d'exemplaires.
Diversité des opinions
Les principales opinions soutenues pour répondre à la question d’une intelligence artificielle
consciente sont les suivantes :
Impossible : la conscience serait le propre des organismes vivants, et elle serait liée à la nature
des systèmes biologiques. Cette position est défendue principalement par des philosophes et
des religieux.
Impossible avec des machines manipulant des symboles comme les ordinateurs actuels, mais
possible avec des systèmes dont l’organisation matérielle serait fondée sur des processus
quantiques. Cette position est défendue notamment par Roger Penrose. Des algorithmes
quantiques sont théoriquement capables de mener à bien des calculs hors de l'atteinte pratique
d'existence du calculateur approprié). Au-delà de la rapidité, le fait que l'on puisse envisager des
systèmes quantiques ouvre des possibilités qui, selon cet auteur, sont fondamentalement
interdites aux machines de Turing.
Hypothétique : On ne dispose pas encore pour le moment d'algorithmes d'IA à mettre en
œuvre. Tout cela reste donc spéculatif.
Impossible avec des machines manipulant des symboles comme les ordinateurs actuels, mais
possible avec des systèmes dont l’organisation matérielle mimerait le fonctionnement du
cerveau humain, par exemple avec des circuits électroniques spécialisés reproduisant le
fonctionnement des neurones.
Impossible avec les algorithmes classiques manipulant des symboles (logique formelle), car de
nombreuses connaissances sont difficiles à expliciter mais possible avec un apprentissage par
l'expérience de ces connaissances à l'aide d'outils tels que des réseaux de neurones formels,
dont l'organisation logique et non matérielle s'inspire des neurones biologiques, et utilisés avec
du matériel informatique conventionnel.
Impossible car la pensée n'est pas un phénomène calculable par des processus discrets et finis.
Pour passer d'un état de pensée au suivant, il y a une infinité non dénombrable, une continuité
d'états transitoires.
Possible avec des ordinateurs manipulant des symboles. La notion de symbole est toutefois à
prendre au sens large. Cette option inclut les travaux sur le raisonnement ou l'apprentissage
symbolique basé sur la logique des prédicats, mais aussi les techniques connexionnistes telles
que les réseaux de neurones, qui, à la base, sont définies par des symboles. Cette dernière
opinion constitue la position la plus engagée en faveur de l'intelligence artificielle forte.
Des auteurs comme Hofstadter (mais déjà avant lui Arthur C. Clarke ou Alan Turing) expriment
par ailleurs un doute sur la possibilité de faire la différence entre une intelligence artificielle qui
éprouverait réellement une conscience, et une autre qui simulerait exactement ce
comportement. Après tout, nous ne pouvons même pas être certains que d’autres consciences
que la nôtre (chez des humains) éprouvent réellement quoi que ce soit. On retrouve là le
problème connu du solipsisme en philosophie.
Travaux complémentaires
Le mathématicien de la physique Roger Penrose pense que la conscience viendrait de
l'exploitation de phénomènes quantiques dans le cerveau, empêchant la simulation réaliste de
plus de quelques dizaines de neurones sur un ordinateur normal, d’où les résultats encore très
partiels de l’IA. Il restait jusqu’à présent isolé sur cette question. Un autre chercheur a présenté
depuis une thèse de même esprit quoique moins radicale : Andrei Kirilyuk
Cette spéculation reste néanmoins marginale par rapport aux travaux des neurosciences.
L'action de phénomènes quantiques est évidente dans le cas de la rétine (quelques quanta de
lumière seulement suffisent à une perception) ou de l'odorat, mais elle ne constitue pas une
condition préalable à un traitement efficace de l'information. En effet, le traitement de
l'information effectué par le cerveau est relativement robuste et ne dépend pas de l'état
quantique de chaque molécule, ni même de la présence ou de la connexion de neurones isolés.
Cela dit, l’intelligence artificielle est loin de se limiter aux seuls réseaux de neurones, qui ne sont
généralement utilisés que comme classificateurs. Les techniques de résolution générale de
problèmes et la logique des prédicats, entre autres, ont fourni des résultats significatifs et sont
exploités par des ingénieurs et chercheurs dans plusieurs domaines (en particulier depuis Mycin
en 1973 pour le diagnostic des maladies du sang).
Intelligence artificielle faible
Définition
La notion d’intelligence artificielle faible constitue une approche pragmatique d’ingénieur :
chercher à construire des systèmes de plus en plus autonomes (pour réduire le coût de leur
supervision), des algorithmes capables de résoudre des problèmes d’une certaine classe, etc.
Mais, cette fois, la machine simule l'intelligence, elle semble agir comme si elle était intelligente.
On en voit des exemples concrets avec les programmes conversationnels qui tentent de passer
le test de Turing, comme ELIZA . Ces logiciels parviennent à imiter de façon grossière le
comportement d'humains face à d'autres humains lors d'un dialogue.
Joseph Weizenbaum, créateur du programme ELIZA, met en garde le public dans son ouvrage
COMPUTER POWER AND HUMAN REASON : si ces programmes semblent intelligents, ils ne le
sont pas. ELIZA simule très grossièrement un psychologue en relevant immédiatement toute
mention du père ou de la mère, en demandant des détails sur tel élément de phrase et en
écrivant de temps en temps « Je comprends. », mais son auteur rappelle il s'agit d'une simple
mystification : le programme ne comprend en réalité rien.
Les tenants de l'IA forte admettent que s'il y a bien dans ce cas simple simulation de
comportements intelligents, il est aisé de le découvrir et qu'on ne peut donc généraliser. En
effet, si on ne peut différencier expérimentalement deux comportements intelligents, celui
d'une machine et celui d'un humain, comment peut-on prétendre que les deux choses ont des
propriétés différentes ? Le terme même de simulation de l'intelligence est contesté et devrait,
toujours selon eux, être remplacé par reproduction de l'intelligence.
Les tenants de l'IA faible arguent que la plupart des techniques actuelles d’intelligence
artificielle sont inspirées de leur paradigme. Ce serait par exemple la démarche utilisée par IBM
dans son projet nommé Autonomic computing. La controverse persiste néanmoins avec les
tenants de l'IA forte qui contestent cette interprétation.
Simple évolution, donc, et non révolution : l’intelligence artificielle s’inscrit à ce compte dans la
droite succession de ce qu’ont été la recherche opérationnelle dans les années 1960, la
supervision (process control) dans les années 1970, l’aide à la décision dans les années 1980 et
le forage de données (data mining) dans les années 1990. Et, qui plus est, avec une certaine
continuité.
Il s'agit surtout d'intelligence humaine reconstituée, et de programmation ad hoc d'un
apprentissage, sans qu'une théorie unificatrice n'existe pour le moment. Le théorème de Cox-
Jaynes indique toutefois, ce qui est un résultat fort, que sous cinq contraintes raisonnables, tout
procédé d'apprentissage devra être soit conforme à l'inférence bayésienne, soit incohérent à
terme, donc inefficace.
Par exemple
Exemple d’un programme d’intelligence artificielle (pseudocode basé sur le langage C).
solution AI(problem_to_solve)
{
if (knowledge >= problem_to_solve) {
1 / 10 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !