Outils Logiciels – OL1 GEII – IUT Nîmes
2016/17
TP 2
Etude de filtres du premier ordre.
Réponses fréquentielle et temporelle.
Diagrammes de Bode et de Nyquist.
Les objectifs de ce TP sont :
savoir générer un espace des fréquences adapté à la visualisation correcte du diagramme de
Bode et de Nyquist d'un filtre du premier ordre
comprendre la signification des diagrammes de Bode et de Nyquist
illustrer les notions de gain, de déphasage d'un filtre du premier ordre en régime sinusoïdal
étudier la réponse d'un filtre RC à un échelon et à un signal carré
illustration des différentes méthodes pour déterminer la constante de temps d'un filtre du
premier ordre
Exercice 1 :
Réponse fréquentielle. Diagrammes de Bode et de Nyquist d'un filtre RC, CR
série
Nous allons étudier les deux filtres RC (passe-bas) et CR (passe-haut).
1. Créez un classeur « Filtre_RC.ods » dans votre répertoire de travail.
2. Renommez la première feuille de calcul « Réponse fréquentielle ».
3. Editez et formatez la feuille afin d'obtenir à gauche de votre feuille de calcul :
1
fréquence pulsation iVr Vc
complexe complexe module argument réelle imaginaire complexe module argument réelle imaginaire
Outils Logiciels – OL1 GEII – IUT Nîmes
2016/17
puis à sa droite :
et enfin sur la droite de votre feuille :
4. Remplissez la première colonne pour obtenir une fréquence qui varie de 10-10 à 1010 Hz sur
1001 cellules. Ce vecteur fréquence ne peut pas être généré linéairement. Il faut utiliser la
fonction PUISSANCE (base ; exposant). Vous prendrez comme base 10 et ferez varier
l'exposant linéairement de -10 à 10 avec la méthode vue dans les précédents exercices.
5. Calculez ensuite la pulsation correspondante, puis en complexe le courant circulant dans le
circuit RC (et CR) série. Pour rappel, le courant est donné par :
i=Ve
R+1
jC ω
6. Calculez ensuite en complexe les tensions aux bornes de la résistance et du condensateur (en
déduire leurs modules, arguments en degrés, parties réelles et imaginaires). Pour rappel, les
tensions sont données par :
2
flitre RC (passe-bas) filtre CR (passe-haut)
Gain module (dB) argument réelle imaginaire Gain module (dB) argument elle imaginaire
sistance 10 Ω
Condensateur
1,00E-06 F
Ve 1 V
Diagramme de Fresnel
fréquence Hz
Ve
Vr
Vc
Diagramme de Bode et Nyquist
Filtre RC Filtre CR
gain
gain (dB)
déphasage
elle
imaginaire
ponse temporelle
signal amplitude phase
Ve
Vr
Vc
Temps Ve Vr Vc
Outils Logiciels – OL1 GEII – IUT Nîmes
2016/17
VR=Ri
VC=i
jC ω
7. En déduire le gain (en linéaire et en dB), le déphasage, les parties réelle et imaginaire des
fonctions de transfert des filtres RC et CR série. Pour rappel, les fonctions de transfert sont
données par :
HRC =Vs
Ve
=VC
Ve
=1
1+jRC ω
HCR=Vs
Ve
=VR
Ve
=jRC ω
1+jRC ω
pour rappel, le gain en dB est donné par
20 log(H)
8. Donnez une valeur de votre choix à la fréquence.
9. Remplissez les tableaux correspondant aux diagrammes de Fresnel, de Bode et de Nyquist et
la réponse temporelle. Vous utiliserez la fonction :
RECHERCHEV(critère_de_recherche;matrice;index;ordre_de_tri)
en utilisant comme matrice l'ensemble du tableau précédemment rempli, et en recherchant
les valeurs correspondant à la fréquence que vous avez choisie. L'index permet de
sélectionner la colonne des valeurs recherchées.
10. Remplissez la colonne des temps pour visualiser 3 périodes avec 501 points. Remplissez
ensuite les colonnes correspondant aux tensions Ve VR et VC.
11. Créez un diagramme XY pour visualiser le diagramme de Fresnel, en ajoutant l'enveloppe
donnant l'ensemble des points parcourus par les tensions VR et VC en faisant varier la
fréquence de 0 à
+
12. Représentez la variation du gain linéaire des filtres RC et CR en échelle semi-logarithmique.
Quelles sont les valeurs du gain linéaire, à la fréquence de coupure et à 10 fois la fréquence
de coupure ? Expliquez pourquoi.
3
Outils Logiciels – OL1 GEII – IUT Nîmes
2016/17
13. Représentez les diagrammes de Bode des filtres RC et CR.
Quelles sont les valeurs du gain en dB, à la fréquence de coupure et à 10 fois la fréquence de
coupure ? Expliquez pourquoi.
Pour rappel, un diagramme de Bode est constitué de deux diagrammes (le gain en dB et le
déphasage en échelle semi-logarithmique)
14. Représentez les diagrammes de Nyquist des filtres RC et CR.
Pour rappel, le diagramme de Nyquist représente dans le plan complexe l'ensemble des
points parcourus par la fonction de transfert d'un filtre lorsque la fréquence varie de 0 à
+
. Il faut donc représenter pour l'ensemble des fréquences la partie imaginaire de H
en fonction de sa partie réelle. Voici, pour exemple, le diagramme de Nyquist du filtre RC :
15. Représentez les formes d'onde des tensions Ve et Vs pour les deux filtres.
16. Sur l'ensemble des diagrammes de Bode, Nyquist, de la variation du gain linéaire en
fonction de la fréquence, affichez un point représentant les valeurs pour la fréquence choisie.
17. Ajoutez un bouton, et une Macro pour animer et balayer en fréquence la valeur de la
fréquence.
Exercice 2 : Etude temporelle du circuit RC série
Dans cet exercice, nous allons étudier la réponse temporelle du circuit RC série, en appliquant en
entrée, premièrement un échelon de tension (réponse indicielle), et deuxièmement un signal carré
périodique.
Nous commençons par étudier le circuit intégrateur, c'est-à-dire que la tension de sortie est mesurée
4
0 0,2 0,4 0,6 0,8 1 1,2
-0,6
-0,4
-0,2
0
Diagramme de Nyquist
fréquence
Filtre RC (passe-bas)
Partie réelle de H
Partie imaginaire de H
Outils Logiciels – OL1 GEII – IUT Nîmes
2016/17
aux bornes du condensateur.
En appliquant la loi des mailles, on montre que :
Ve=VR+VC=RI +VC=RC VC
t+VC
On obtient une équation différentielle du premier ordre.
La solution de cette équation, dans le cas simple d'un échelon de tension (Ve=0 pour t<t0 et Ve=E
pour t>t0) est donnée par la fonction :
VC=E[1exp(− tt0
τ)] avec τ = RC
Pour un signal d'entrée plus complexe, pour lequel une solution analytique est difficile à trouver, il
est possible de résoudre cette équation numériquement. En première approximation, on simplifie la
dérivée par :
VC/t≈ (VC
nVc
n1)/(tntn1)
. Le pas temporel entre deux points sera noté Te.
Après arrangement, on obtient l'équation de récurrence suivante :
Vc
n=TeVe
n+τVc
n1
Te+τ
A faire :
1- Créez une feuille de calcul « réponse indicielle » et préparez les cellules pour obtenir :
On choisit un échelon E=5 V, appliqué à t0=0.2 s. Le pas temporel est fixé à 1 ms et la constante de
temps, τ=0.15 s.
2- A l'aide du pas temporel, remplissez la colonne des temps pour 1000 points. Ensuite, créez
l'échelon de tension, à l'aide d'une fonction SI(). Enfin, remplissez la colonne de la tension aux
bornes du condensateur, à l'aide de l'équation donnée précédemment. Attention, pour t<t0, VC=0 !!
5
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !