Université Paris Diderot 2007-2008
51EM3 Electrostatique et Magnétostatique
Magnétostatique
1. Fil Conducteur
1) Calculer le champ magnétique produit par un fil conducteur de longueur finie, parcouru par
un courant I, en un point quelconque M de l'espace situé à la distance
ρ
du fil. En déduire le
champ magnétique créé par un fil infini.
2) Par des considérations de symétrie et l'utilisation du théorème d'Ampère, retrouver le champ
magnétique créé par un fil infini.
2. Spire Circulaire
1) On considère une spire circulaire de rayon R, parcourue par un courant constant I. Calculer
le champ magnétique en un point de l'axe de la spire à la distance z de son centre.
2) Etudier le cas particulier z >> R.
3) Exprimer y = B(z)/B(z=0) et tracer la courbe y en fonction de z/R.
4) Calculer la circulation de B le long de l'axe de la spire et vérifier le théorème d'Ampère.
3. Champ créé par un solénoïde
On empile N spires circulaires de rayon a, parcourues par un
courant I, sur une longueur l, de façon à former une nappe
de courant circulaire tubulaire (voir figure ci-contre).
1) Calculer le module
λ
de la densité linéaire de courant
superficiel de cette nappe.
2) Calculer le champ magnétique créé par cette source en un
point de l'axe de l'empilement.
(conseil : l'angle
α
est un paramètre commode pour repérer
la position considérée. Le résultat s'écrit simplement en
fonction de
α
1
et
α
2
)
3) Calculer le champ magnétique B d'un empilement de longueur "infinie" en un point de l'axe.
4) Retrouver B à l’aide du théorème d’Ampère appliqué à l'intérieur et à l'extérieur du
solénoïde.
1
4. Plan conducteur
On considère un plan conducteur parcouru par un courant tel qu'il passe
λ
ampères par mètre
de plan. En utilisant l'expression de B trouvée pour un fil infini, calculer le champ magnétique
créé par le plan en tout point de l'espace. Retrouver B à l’aide du théorème d’Ampère.
5. Boucle fermée dans un champ magnétique
1) Un fil rectiligne, parcouru par un courant I, est soumis dans une région de longueur l à un
champ magnétique B uniforme, orthogonal au fil. Calculer la force de Laplace agissant sur
cette portion de fil. Préciser sa direction et son sens.
2) On considère maintenant un circuit rectangulaire parcouru par un courant d’intensité I et
placé dans un champ magnétique B uniforme. Le plan du circuit, de longueur l et de largeur L,
passe par l’axe (Oz) et son vecteur normal fait un angle
θ
avec le champ parallèle à l’axe (Oy).
Calculer la résultante et le moment du couple des forces auxquels est soumis la boucle. En
déduire ses positions d’équilibre. Que se passe-t-il si le sens du courant est inversé ?
6. Interaction magnétique entre 2 courants
On considère deux fils infinis rectilignes F
1
et F
2
parallèles. La distance qui les sépare est notée
a et ils sont parcourus par des courants I
1
et I
2
. Calculer la résultante des forces qui s'exercent
sur un tronçon de longueur l d'un des fils.
7 * Fils cylindriques
1) On considère un cylindre de rayon a et de
longueur considérée comme infinie devant a,
parcouru par un courant de densité volumique
ja = juz. En supposant la répartition du courant
dans le fil homogène, déterminer le courant I
qui circule dans le cylindre.
a
b
z
O
j
b
j
a
2) Retrouver à partir de considérations de symétrie et d'invariance de la distribution de courant,
la direction du champ magnétique
B
en un point quelconque
M
ainsi que les variables dont
dépend sa norme.
3) Calculer l'expression de
B
en tout point de l'espace.
4) On entoure le cylindre précédent d'une couche cylindrique de rayon intérieur
a
et de rayon
extérieur
b
. Cette couche est parcourue par un courant de retour, de densité
j
b
= −juz
. (On
néglige l'épaisseur des isolants de protection.)
a) Déterminer
b
pour que le courant circulant dans la couche extérieure ait une intensité
égale à
I
.
b) Calculer l'expression de
B
en tout point de l'espace.
c) Tracer la courbe représentative de
B
en fonction de la distance au fil
ρ
.
2
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !