Table des mati`
eres
1 Exemples et d´
efinitions 3
I Exemples ..................................................... 3
I.1 Cascontinuetdedimensionfinie .................................... 3
I.2 Probl`
emesennombresentiers ...................................... 10
I.3 Probl`
emeendimensioninfinie...................................... 11
II Probl`
emed’optimisation ............................................. 13
II.1 D´
efinitions ................................................ 13
II.2 Classification............................................... 16
III Exercices ..................................................... 18
2 Outils math´
ematiques 23
I Introduction.................................................... 23
II Alg`
ebre lin´
eaire.................................................. 23
II.1 rappels .................................................. 23
III Calcul diff´
erentiel................................................. 24
III.1 Notations................................................. 24
III.2 Th´
eor`
eme des fonctions compos´
ees ................................... 25
III.3 FormuledeTaylors............................................ 26
III.4 Courbesdeniveau ............................................ 26
III.5 Surfaces et plan tangent dans R3..................................... 27
IV Convexit´
edesapplications ............................................ 27
IV.1 Ensembles convexes - applications convexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
IV.2 Convexit´
e et d´
eriv´
ee premi`
ere ...................................... 28
IV.3 Convexit´
e et d´
eriv´
eeseconde....................................... 29
IV.4 Illustrations................................................ 30
V Exercices ..................................................... 30
V.1 Aveccorrections ............................................. 30
3 Existence de solution, unicit´
e de solution 33
I Introduction.................................................... 33
II Existencedesolution ............................................... 33
II.1 Probl`
emesaveccontraintes........................................ 33
II.2 Probl`
emesanscontraintes ........................................ 34
III Casconvexe.................................................... 34
IV Exercices ..................................................... 36
IV.1 Corrig´
esdesexercices .......................................... 36
IV.2 Exercicessanscorrections ........................................ 36
4 Condition n´
ecessaire, condition suffisante de solution
Cas sans contraintes et cas de contrainte convexe 39
I Conditiondupremierordre............................................ 39
I.1 Cassanscontraintes ........................................... 39
I.2 Casdecontraintesconvexes ....................................... 39
I.3 Probl`
emesconvexes ........................................... 40
II Conditions du deuxi`
emeordre .......................................... 40
II.1 Condition n´
ecessaire ........................................... 40
II.2 Conditionsuffisante ........................................... 41
III Exercices ..................................................... 42
i