exercice III: Des lois de Kepler à l`étude d`un astéroïde 4pts

Correction DS TS8 13-05-2014
EXERCICE I : DES LOIS DE KEPLER À L’ÉTUDE D’UN ASTÉROЇDE…
1. En hommage à Kepler
1.1. Planètes en orbite elliptique
1.1.1. (0,25) D’après la première loi de Kepler (loi des orbites), dans le référentiel héliocentrique, la trajectoire du
centre d’une planète est une ellipse dont le centre du Soleil est l’un des foyers. La figure 10 montre bien le Soleil
confondu avec le foyer F1.
1.1.2. (0,25) D’après la deuxième loi de Kepler (loi des aires), le rayon vecteur
SM
balaie des surfaces égales
pendant des durées égales. L’aire A1 est égale à l’aire A2.
1.1.3. (0,25) Vitesse moyenne entre M2 et M2 : v2 =
'
22
MM
t
Vitesse moyenne entre M1 et M’1 : v1 =
'
11
MM
t
.
La distance M1M’1 est plus petite que la distance M2M’2, or ces distances sont parcourues pendant la même durée t.
Donc v1 < v2, la vitesse moyenne entre les points M1 et M’1 est inférieure à celle entre les points M2 et M’2.
1.2. Planètes en orbite circulaire
1.2.1. (0,25) force de gravitation
3
F
exercée par le Soleil sur une
planète quelconque du système solaire de masse m dont
le centre d’inertie est situé au point M3.
point d’application : M3
direction : (OM3)
sens : de M3 vers O
1.2.2. (0,25)
3.
.²S
mM
F G u
r

1.2.3. (0,25) En appliquant la deuxième loi de Newton au système {planète}, dans le référentiel héliocentrique
considéré galiléen, la seule force exercée sur la planète étant
3
F
:
33
.F ma
.
.²S
mM
Gu
r
=
(0,25)
3
a
=
.²S
M
Gu
r
1.2.4. (0,25)
3
a
et
4
a
sont des vecteurs de même valeur car G et MS sont constantes,
de plus r = OM3 = OM4. Voir figure ci-dessus.
1.2.5. (0,25) Le vecteur accélération est radial (porté par le rayon r), centripète (de sens planète vers Soleil), de
valeur constante donc le mouvement est circulaire uniforme.
1.2.6. (0,25) La courbe représentative de en fonction de r3 est une droite passant par l’origine. Donc est
proportionnelle à r3. En accord avec la troisième loi de Kepler qui indique
3
²T
r
= k avec k constante.
1.2.7. (0,25) On prend le point, sur la droite, de coordonnées (r3 = 4,01035 m3 ; T² = 1,21017 s²).
3
²T
r
=
17
35
1,2 10
4,0 10
= 3,01019 s².m-3 résultat en accord avec la valeur donnée.
1.2.8. (0,25) T = 6,521 ans à convertir en s.
3
²T
r
= 3,01019 donc r =
1/3
2
19
3,0 10
T



r =
1/3
2
19
3,0 10
T



=
 
1/3
19
6,521 365 24 3600 ²
3,0 10
 



= 5,21011 m séparent les centres du Soleil et de Rhea.
2. La troisième loi de Kepler comme balance cosmique…
O
M3
M4
u
3
F
3
a
4
a
2.1. (0,25)
2
3
²4TGM
r
T période de révolution du satellite autour de Rhea Sylvia, en s,
r distance entre le centre du satellite et le centre de Rhea Sylvia, en m,
M masse de Rhea Sylvia, en kg,
(0,25) G constante de gravitation universelle :
23
4.
²r
GTM
G s’exprime en m3.s-2.kg-1
2.2. Utilisons les données relatives à Romulus : T = 87,6 h à convertir en s et r = 1360 km à convertir en m.
2
3
²4TGM
r
(0,25)donc M =
23
4.
²
r
GT
.
M =
 
 
 
2 3 3
11
4 (1360 10 )
6,67 10 87,6 3600 ²
(0,25)M = 1,4971019 kg = 1,501019 kg masse de Rhea Sylvia.
Exercice n°2 :
Situation : un haltérophile monte sa barre, avec altères,
d’une hauteur Δh = 50 cm.
Questions :
1) Le travail du poids W(P) est-il moteur, résistant où nul dans le
cas décrit par l’image ? Justifier.
Il est résistant car il défavorise le mouvement.
2) Calculer ce travail en sachant que la masse soulevée est égale à 120 kg. On prendra g = 10 N.kg-1.
W(P) = m.g. (za-zb) = 120.10.0,5= 600J
3) Pendant son effort,
l’haltérophile fait un bruit
différent durant la phase
d’inspiration de l’air et
durant la phase
d’expiration de l’air, des
analyses spectrales nous
donnent les résultats
suivants :
a) Dans quelle phase a-t-on un son pur ? Justifier
L’inspiration car il n’y a que la fondamentale.
b) Les deux sons possèdent-ils la même fréquence ? Justifier.
Oui car la fondamentale possède, pour les 2 phases, la même fréquence, ici 2093Hz.
4) Pour avoir assez d’énergie pour faire cet effort, l’organisme met en place une réaction chimique qui permet
l’assimilation de l’énergie issue du glucose.
Vaut-il mieux être « chaud » ou « froid » pour que l’assimilation soit plus rapide ? Justifier.
Il vaut mieux être chaud car la température est un facteur cinétique.
1 / 2 100%

exercice III: Des lois de Kepler à l`étude d`un astéroïde 4pts

La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !