TS CIRA TP COURS D’ELECTRICITE
OSCILLATEURS A PONT DE WIEN ET
A RESISTANCE NEGATIVE
1/4
II. OSCILLATEUR A PONT DE WIEN.
2.1. MONTAGE DE BASE.
On utilise un montage amplificateur non inverseur à A.D.I. dans la chaîne directe H et un filtre de
Wien dans la chaîne de retour K.
On prendra :
R = 10 k ;
C = 10 nF ;
R2 = 2 k ;
R1 boîtes à décades.
A.D.I. : TL081
VCC = VSAT = 15 V
a) ETUDE THEORIQUE.
* Rappeler les résultats essentiels du filtre de Wien (fonction de transfert K, allure de G = 20 log K,...).
* Rappeler l’expression de H en fonction de R1 et R2.
* A quelle condition le montage peut présenter des oscillations quasi-sinusoïdales ?
* Quelle valeur de R1 permet de réaliser la condition de Berkhausen ? Quelle est alors la fréquence des
oscillations ?
b) ETUDE EXPERIMENTALE.
Réaliser le montage et terminer le domaine des valeurs de R1, pour lesquelles des oscillations stables
et non distordues apparaissent. Mesurer la fréquence et l’amplitude de ces oscillations.
Relever et commenter l’allure des tensions uS (t) et uR (t).
Critiquer ce montage.
2.2. AMELIORATION DU MONTAGE.
Dans le montage précédent on a vu que l’on ne pouvait pas fixer la valeur de l’amplitude de sortie uS.
Elle est fixée par la tension de saturation de l’A.D.I.
A la naissance des oscillations, il faut empêcher la tension de sortie de croître jusqu’à la valeur de la
tension de saturation de l’A.D.I.. L’amplification de la chaîne directe doit diminuer lorsque la tension de
sortie augmente.
Ceci peut être réalisé à l’aide d’un composant non linéaire dont la fonction de transfert dépend de la
tension. On propose d’utiliser ici un transistor à effet de champ, ou TEC 2N3819 (on peut égelement utili-
ser une VDR,....).
On obtient alors le schéma général suivant :
+
-
+
R1
R2
US
R
C
UR
R
H
2/4
T : TEC 2N3819
D1 : 1N4148
Cd = 1 µF
Rd = 100 k
a) ROLE DU TEC.
Sur le document fourni en annexe, les portions de caractéristiques statiques de ID = f (UDS), à UGS
constante, peuvent être assimilées à des portions de droites pour UDS < Up (ici environ 2,5 V).
Le TEC se comporte alors comme une résistance entre D et S dont la valeur dépend de UGS.
L’expression de RDS (pour UDS << Up) est :
R = R
1 + U
U
DS DS ON
GS
p
avec RDS ON : valeur minimale de RDS à UGS = 0 .
Ainsi, si UGS RDS ID .
Réaliser le montage suivant :
R1 = 700
R2 = 2 k.
Le GBF simule la tension de sortie du filtre de Wien, réinjectée en E+.
Le générateur de tension continue réglable à masse flottante fournit la tension UGS < 6 V qui sera en-
suite remplacé par le montage {D1, Rd et Cd}.
+
-
+
R2
US
UR
R
C
R
C
H
R1
C
d
R
d
T
G
D
S
D1
+
-
+
R2
US
Ue
R1
T
G
D
S
GBF
+
UGS
-
CH1
CH2
3/4
Régler le GBF pour qu’il délivre une tension ue alternative sinusoïdale de fréquence f = f0 = 1,59 kHz
et d’amplitude 0,8 V ; faire varier UGS (< 0) entre 0 et - 3 V et relever les valeurs de US et Ue corres-
pondantes dans un tableau. On relèvera les tensions notamment pour UGS = - 0,87 V.
En déduire pour chaque mesure la valeur de Av =
U
US
e
et tracer AV = f (UGS) ;
Commenter la courbe et conclure.
b) ETUDE DU MONTAGE COMPLET.
Réaliser le montage complet.
Rechercher le domaine des valeurs de R1 pour lequel les oscillations sont stables et non distordues.
Comparer au cas du montage sans contrôle automatique du gain (C.A.G.).
L’ensemble {D1, Rd et Cd} est un détecteur de crête négative. Le justifier en détaillant son fonctionne-
ment. (on remarquera que la constante de temps Rd.Cd est très supérieure à la période des oscillations).
III. OSCILLATEUR A RESISTANCE NEGATIVE.
3.1. PRINCIPE.
Soit le montage ci-dessous le condensateur est
chargé sous une tension constante u = U0.
A t = 0, on ferme K, que se passe-t-il ?
3.2. ETUDE THEORIQUE D’UN DIPÔLE A RESISTANCE NEGATIVE.
On suppose l’A.D.I. parfait alimenté entre VCC VSAT.
Il s’agit de déterminer l’impédance d’entrée (la résistance d’entrée) : Rn =
v
ie
e
.
Montrer que Rn =
v
i = - R
RR
e
e
1
20
.
< 0
ve
ie
A
M
Dn
Rn
ve
vS
+
-
+
S
E+
E-
ud
R1
R0
ie
R2
A
M
Dn
i1
u
K
L, r
R
4/4
3.3. ETUDE EXPERIMENTALE D’UN DIPÔLE A RESISTANCE NEGATIVE.
* Proposer une méthode expérimentale pour mesurer Rn.
* Réaliser le montage et mesurer Rn. Comparer à la valeur théorique.
3.4. ETUDE THEORIQUE DE L’OSCILLATEUR A RESISTANCE NEGATIVE.
R = 100 ;
C = 1 µF ;
L = 0,5 H ;
r = 11,5 ;
A quelle condition le montage oscille ? Justifier.
A quelle fréquence f0 devrait-il osciller ? Justifier.
3.5. ETUDE EXPERIMENTALE D’UN OSCILLATEUR A RESISTANCE NEGATIVE.
* Réaliser le montage avec pour R1 une association série de boîtes AOIP x 100 ; x 10 et x 1 ;
* Placer un oscilloscope pour visualiser simultanément les tensions vC (t) et vS (t) ;
* Régler R1 à sa valeur minimale et augmenter progressivement R1 jusqu’à la naissance des oscillations
sinusoïdales ; noter la valeur de R1 et relever les oscillogrammes de vC (t) et vS (t) en concordance de
temps ;
* Donner la valeur de Rn correspondante. En déduire la valeur de r.
* Déterminer la fréquence des oscillations et comparer à la valeur théorique. Justifier l’écart.
* Que se passe-t-il si R1 augmente encore ? Justifier.
R
L, r
C
ve
vS
+
-
+
S
E+
E-
ud
R1
R0
ie
R2
A
M
Dn
i1
vC
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !