Cherchons ensemble Énoncés modifiables
Myriade 6e Chapitre 10 Figures usuelles © Bordas 2016
Activité 1 Reconnaitre des triangles particuliers Objectif 1
1. Recopier et compléter le tableau à l’aide des figures ci-dessous.
2. a. Quels sont les triangles isocèles ? les triangles rectangles ? les triangles
équilatéraux ?
b. Pour chaque type de triangle, énoncer une propriété concernant les côtés.
c. Pour chaque type de triangle, énoncer une propriété concernant les angles.
Activité 2 Construire un triangle particulier Objectif 1
A. Suivre un programme de construction
Tracer un segment [AB] de longueur 5 cm.
Tracer un arc de cercle de centre A et de rayon 6 cm.
Tracer un arc de cercle de centre B et de rayon 5 cm.
Les deux arcs de cercle se coupent au point C.
Tracer le triangle ABC.
1. Réaliser la figure décrite par le programme de construction.
2. Quelle est la nature du triangle ABC ?
B. Écrire un programme de construction
1. Quelle est la nature du triangle DEF ci-contre ?
2. Écrire un programme de construction permettant de réaliser
cette figure.
Cherchons ensemble Énoncés modifiables
Myriade 6e Chapitre 10 Figures usuelles © Bordas 2016
Activité 3 Découvrir les propriétés des quadrilatères particuliers Objectif 2
A. Préparation du matériel
Découper deux bandes de papier de largeur 1 cm :
- la première de longueur 15 cm ;
- la seconde de longueur 20 cm.
Aux alentours du centre de la seconde bande,
couper une fente de 7 cm environ.
Enfiler la petite bande de papier dans la grande.
B. Manipulations et observations
1. a. En faisant glisser les deux bandes de papier,
former un losange dont les sommets sont les
extrémités des bandes.
b. Comment les deux bandes sont-elles placées
l’une par rapport à l’autre ? En déduire une
propriété des diagonales d’un losange.
2. a. Manipuler à nouveau les deux bandes de façon
à former un rectangle. Pour cela, on pourra
raccourcir l’une des bandes si besoin.
b. À partir des observations faites précédemment, énoncer une propriété des
diagonales d’un rectangle.
3. a. À l’aide des deux bandes de papier, former un carré dont les sommets sont les
extrémités des bandes. En déduire une propriété du carré relative à ses diagonales.
b. Parmi les propriétés énoncées précédemment, laquelle permet d’affirmer qu’un
carré est un rectangle particulier et un losange particulier ? Expliquer
Activité 4 Construire un quadrilatère particulier Objectif 2
A. Suivre un programme de construction
Tracer un segment [AC] de longueur 6 cm et placer son milieu O.
Tracer une droite (d) passant par O.
Placer sur (d) deux points B et D situés à la même distance de O que le point A.
Tracer le quadrilatère ABCD.
1. Réaliser la figure décrite par le programme de
construction.
2. Quelle est la nature du quadrilatère ABCD ?
B. Écrire un programme de construction
1. Quelle est la nature du triangle DEFG ci-contre ?
2. Écrire un programme de construction permettant de
réaliser cette figure.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !