Electrodynamique – circuit électrique en courant continu

URL source du document
URL à modifier (clic droit de la souris)
Académie de Versailles
Document
Electrodynamique circuit électrique en courant continu
Les objectifs généraux poursuivis
1. Poursuivre le travail de construction du modèle circulatoire du courant électrique
entrepris au collège en montrant notamment que, dans un circuit électrique, la
conservation de l’intensité du courant n’est pas incompatible avec le transfert
d’énergie électrique du générateur vers les récepteurs.
2. Concevoir le circuit électrique comme un système dans lequel le fonctionnement
de tout composant dépend de celui des autres et, ce faisant, donner du sens au
concepts d’énergie et de puissance électriques, d’intensité, de tension, de force
électromotrice et de résistance électrique.
3. Faire des prévisions quantitatives lors de la réalisation ou de la modification d’un
circuit en utilisant différents outils étudiés ou rencontrés en classe (lois et relations,
graphiques etc.).
Les principales conceptions des élèves en électrocinétique
De nombreuses études, effectuées auprès d’élèves de l’enseignement secondaire de
différents pays, montrent que la difficulté principale qu’ils rencontrent dans
l’interprétation des phénomènes électriques semble pouvoir être résumée par la
question suivante :
Comment le courant électrique peut-il transmettre l’énergie du générateur vers
les récepteurs ?
Pour répondre à cette question les élèves imaginent implicitement différents
mécanismes dont les plus fréquents sont les suivants :
- Existence de courants antagonistes : deux courants issus des pôles du
générateur se croisent dans le circuit et se frottent l’un à l’autre dans les récepteurs.
- Représentation circulatoire avec usure du courant : en traversant un récepteur,
le courant s’use ; il y a disparition d’une partie des particules ou ralentissement de
celles-ci.
De plus, considérant le générateur comme seul responsable de l’établissement du
courant dans le circuit, les élèves associent spontanément la valeur de l’intensité du
courant qui y circule aux caractéristiques du seul générateur : pour eux, c’est le
générateur et lui seul qui fixe la valeur de l’intensité (représentation du nérateur
à courant constant).
Le principe de la démarche adoptée
Pour tenter de s’attaquer à cette dernière difficulté, un premier niveau d’explication
du fonctionnement d’un circuit série peut être donné en utilisant une analogie
mécanique (analogie du train, de la courroie de transmission ou de la chaîne de
bicyclette). Cette analogie est pertinente pour comprendre notamment les
modifications apportées au fonctionnement d’un circuit. Avant tout, elle permet de
donner du sens aux concepts de courant et à l’intensité de celui-ci ; elle aide à
comprendre comment l’intensité du courant dépend du générateur et des récepteurs
du circuit et à s’approprier la notion de circuit électrique compris comme système
dans lequel le fonctionnement de tout composant dépend de ceux des autres. Mais
elle ne dit rien sur les transferts d’énergie électrique qui s’opèrent dans le circuit.
Comment alors concilier le modèle circulatoire d’un courant de particules avec
un modèle distributif du transfert de l’énergie ?
C’est dans cette question que réside, semble-t-il, la principale difficulté qu’il convient
de dépasser si nous voulons que les élèves puissent faire évoluer favorablement
leurs conceptions. Pour cela, il est possible de fonder le raisonnement sur un modèle
microscopique plus élaboré de la conduction électrique. Les connaissances des lois
de Newton telles qu’elles ont été travaillées en mécanique devraient permettre aux
élèves de s’approprier les caractères essentiels d’un tel modèle.
La vision mécanique du déplacement des charges constitue, par rapport à ce que les
élèves ont vu au collège, l’élément qualitativement nouveau qui doit leur permettre
d’accéder à une meilleure compréhension des phénomènes électriques, en les
reliant à d’autres types de phénomènes. Cette vision permet avant tout de donner un
sens aux concepts de courant et d’intensité de celui-ci. Le modèle peut être
schématisé ainsi :
Un circuit électrique en courant continu est un réseau de conduites, fermé sur lui-
même, dans lequel le courant de fluide électrique dépend d’une part du
générateur qui produit et entretient le mouvement des charges et d’autre part de
l’ensemble des éléments résistants disposés le long du circuit. Cette résistance peut
être assimilée à un frottement des charges contre le réseau d’ions dans lesquelles
elles se déplacent. Ce frottement conduit tout naturellement à une augmentation
locale de l’énergie interne du conducteur et à une augmentation de sa température.
C’est ce qu’on appelle l’effet Joule.
1- Dans un premier temps, il est nécessaire de relier l’intensité du courant électrique
à la vitesse des charges. On considère un conducteur cylindrique de section S, dans
lequel circulent des charges ayant une vitesse v. L’intensité du courant est mesurée
par le nombre de charges qui traversent une section droite dans l’unité de temps. Or,
pendant l’unité de temps, toutes les charges contenues dans un cylindre de base S
et de hauteur v traversent une section droite.
Si l’on désigne par n le nombre de charges par unité de volume et q la valeur de la
charge élémentaire, on a donc I = nqSv.
Remarque : cette relation permet de calculer la vitesse des charges connaissant n. Si
l’on admet que chaque atome libère un électron pour la conduction, n peut être
calculé à partir de la masse volumique du métal et de la masse atomique de
l’élément.
2- Le modèle mécanique peut être poursuivi pour rendre compte quantitativement de
certains transferts d’énergie. Il est clair que c’est au niveau du générateur que les
charges sont poussées ”. En terme de mécanique, on dit qu’une force (électrique)
s’exerce sur chaque charge. Comment cette action locale se répercute-t-elle dans
tout le circuit, loin du générateur ? Puisque le fluide de charge est incompressible, si
les charges subissent une force en un endroit du circuit, elles transmettent cette
action de proche en proche, comme dans un liquide, à toutes les charges du circuit,
et c’est l’ensemble des charges qui se met en mouvement : un courant électrique
circule.
Soit F la force subie par une charge,
x son déplacement pendant l’intervalle de
temps
t. Le travail fourni par la force est donc F.
x. Soit n le nombre de charges
par unité de volume. Dans une portion AB de conducteur de longueur l et de section
S, le nombre de charge est donné par nlS, le travail total de la force motrice est donc
nlSF.
x , et la puissance dissipée dans cette portion de circuit est P = nlSFv. Compte
tenu de l’expression du courant, I = nqSv, on obtient :
I
q
Fl
I
nqS
nlSF
P
Cette puissance est donc donnée par le produit de l’intensité du courant par le travail
UAB de la force motrice par unité de charge du point A au point B. On a l’habitude
d’appeler le travail de la force électrique différence de potentiel ou tension
entre les points A et B. Le volt est donc égal au joule par coulomb Ainsi, l’énergie
électrique est transmise au conducteur AB à la puissance
IUP AB.
. Cette relation
fait la jonction entre la mécanique introduite en première et les notions d’électricité
macroscopiques empiriques vues antérieurement. C’est cette unification qui justifie
d’établir le lien entre l’intensité du courant et la vitesse des charges.
Dans le cas le récepteur est purement résistif, on peut aller plus loin. En effet, si
les charges n’accélèrent pas sous l’effet de la force électrique, c’est que dans leur
déplacement elles subissent de la part du milieu un frottement qui compense la force
électrique (application du principe de l’inertie). Dans les conditions usuelles, cette
force de frottement est, comme souvent, proportionnelle à la vitesse, c’est-dire au
courant électrique lui-même(cf. plus haut). Le travail de la force électrique, égal en
valeur absolu au travail de la force de frottement, est donc aussi proportionnel au
courant, et l’on peut écrire : UAB = RI, le coefficient de proportionnalité R est
appelé résistance de la portion de conducteur compris entre A et B. En reportant
dans l’expression de la puissance, on trouve P = RI2. L’énergie dissipée pendant un
intervalle de temps
t est donnée par W = RI2
t.
L’avantage escompté d’une approche mécanique de l’électricité en courant continu
doit être de faciliter l’acquisition des notions suivantes :
- Les charges électriques en mouvement (constituant le courant) ne proviennent pas
du générateur, mais elles remplissent complètement la totalité du circuit.
- Le rôle du générateur est de produire et d’entretenir ce mouvement, les récepteurs
au contraire le limitent. L’intensité du courant qui s’établit résulte de ces deux effets
antagonistes.
- Le courant de charges électriques assure le transport de l’énergie électrique du
générateur vers les récepteurs.
La conservation de l’énergie est formulée ici de la manière suivante : Toute
l’énergie électrique fournie au circuit par le générateur est, dans le même temps,
intégralement transmise aux récepteurs entre lesquels elle est répartie ou ce qui
revient au même : La puissance à laquelle l’énergie électrique est fournie par le
générateur est à chaque instant égale à la somme des puissances correspondant
aux énergies reçues par les récepteurs ”. Les lois de conservation et d’additivité des
intensités et des tensions sont alors déduites de cette loi fondamentale de
conservation de l’énergie.
Ainsi, en s’appuyant sur la conservation et sur les transferts d’énergie dans le circuit,
on apprend à bien différencier les notions fondamentales de l’électrocinétique :
intensité, tension, énergie et puissance que les élèves ont tendance à confondre et
qu’ils expriment sous le vocable de “courant” (le “courant” est plus fort, plus puissant,
plus énergétique ; il a plus de tension plus de force moins de résistance etc.). Il s’agit
donc de donner du sens à chacune de ces grandeurs fondamentales.
Cette approche revient à renverser l’ordre habituel de l’étude. Auparavant, on partait
des lois de l’électricité pour ensuite vérifier éventuellement- la conservation de
l’énergie. En déduisant les lois de l’électrocinétique du principe de conservation,
nous proposons ici de procéder dans l’ordre inverse.
Pour en savoir plus…
CLOSSET J-L., D’où proviennent certaines erreurs rencontrées chez
les élèves et les étudiants en électrocinétique ?, bulletin de l’Union
des physiciens, N°657 , octobre 1983, 81-101.
CLOSSET J-L., les obstacles à l’apprentissage en électrocinétique,
bulletin de l’union des physiciens, N°716 , juillet août septembre
1989, 931-949.
JOHSUA S. et DUPIN J-J, Représentations et modélisations : le débat
scientifique dans la classe de physique, Berne, Peter Lang,
(deuxième partie : les représentations en électrocinétique), 1989.
ROBARDET G. et GUILLAUD J-C., Eléments de didactique des sciences
physiques, Presses Universitaires de France, Paris, 1997.
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !