Voici un exercice où l`usage des TICE permet l`étude de la

Voici un exercice où l’usage des TICE permet l’étude de la composée d’une symétrie centrale
et d’une translation. Cet exercice pourrait donc être proposé au jury dans le cadre d’un sujet
TICE relatif à l’illustration de la partie du PO de la classe de Troisième consacrée aux
composées de symétries centrales et de translations.
F
,
1
F
et
'F
sont trois figures telles que :
1
F
est l’image de
F
par une symétrie s de centre O ;
'F
est l’image de
1
F
par une translation de vecteur
u
r
.
B
A
M
O
M1
A1
M'
A'
B'
1. Étude expérimentale
a. Reproduire la figure avec un logiciel de géométrie dynamique. Tracer les segments [MM’],
[AA’] et [BB’]. Qu’en pensez-vous ?
Réponse attendue :
La reproduction du tracé pose quelques problèmes qui nécessite une explicitation des
propriétés de la symétrie centrale et de la translation : transformation d’un segment en
un segment, d’un demi-cercle en un demi-cercle.
Les 3 segments tracés sont manifestement concourants en un point qui semble être le
milieu de chacun des segments. Cette dernière observation peut être mise à l’épreuve
en demandant le calcul des distances entre le point de concours et les extrémités.
On attend que les élèves finissent par énoncer que les 3 segments sont concourants (en leur
milieu).
b. En utilisant les possibilités du logiciel, vérifiez que
'F
semble être l’image de
F
par
une symétrie centrale. On note O’ son centre.
Si le fait que le point de concours est le milieu des 3 segments a été formulé, l’énoncé du b. et
c. est superflu. Il vaut mieux poser la question b’.
c. Précisez, à l’aide du logiciel la position du point O’ par rapport aux points M et M’, puis
par rapport aux points A et A’ et par rapport aux points B et B’. Énoncez la propriété
observée des figures
F
et
'F
.
b’. En utilisant les possibilités du logiciel, étudiez le lien qui existe entre
F
et
'F
.
Énoncez la propriété observée sur les figures
F
et
'F
.
On attend que soit formulée la phrase : «
'F
est l’image de
F
par une symétrie centrale de
centre O’ ».
c. (ou d.) À partir d’une nouvelle figure de votre choix, mettez à l’épreuve le résultat que vous
venez d’observer à propos des figures
F
,
1
F
et
'F
. Confirmez-vous votre énoncé ? si ce
n’est pas le cas, modifiez-le pour qu’il soit conforme à vos observations.
Il s’agit de laisser un peu d’autonomie et de permettre d’augmenter le temps d’appropriation
du/des résultat(s) observé(s).
2. Démonstration
a. Isoler la sous-figure constituée des points M, O,
1
M
, M’ (en utilisant la fonction
« Montrer/Cacher » par exemple). Considérer le point I milieu de [
1'MM
] et tracer le point
O’, image de O par la translation de vecteur
1
MI
uuur
.
Si le segment [MM’] a été tracé, le point O’ - tel qu’il vient d’être défini - est « sur » le
segment [MM’]
b. En considérant un parallélogrammes bien choisi, justifier que (OO’) // (
1'MM
) et que
1
1
2
''OO M M=
.
En considérant le parallélogramme O
1
M
IO’, on justifie que la droite (OO’) est parallèle à la
droite (
1
M
M’) et que OO’ =
1
M
I =
1
1
2'MM
.
c. En notant O’’ le milieu de [MM’], justifier que O’’ = O’.
Le théorème des milieux permet de justifier que (OO’’) // (
1
M
M’) et que (IO’’) // (
1
MM
). On
en déduit que
1
"OO IM
est un parallélogramme et donc que
"'OO OO=
uuuur uuuur
. D’où O’’ = O’.
Proposer un énoncé qui résume l’étude faite.
La composé de la symétrie de centre O et de la translation de vecteur
u
r
est une symétrie
centrale (dont le centre se déduit de O par la translation de vecteur
v
r
tel que
u
r
= 2.
v
r
).
Remarque : on pourra à cette occasion introduire la notation
1
2u
r
.
Commentaire : L’utilisation des TICE permet :
Des représentations graphiques de qualité qui facilitent l’observation des propriétés
des figures mises en jeu ;
Des énoncés moins directifs et donc une plus grande autonomie des élèves quant aux
résultats que l’enseignant souhaite mettre en évidence ;
La possibilité d’isoler des sous-figures facilitant le repérage de ce qui est essentiel ;
La création rapide de configurations « originales » destinées à confirmer/infirmer les
résultats observés.
- Sujet « avec TICE » : "Présenter un choix d'exercices permettant de faire le bilan sur les stratégies
que peut utiliser un élève de 3ème pour démontrer l'alignement de trois points du plan."
Le dossier comportait une page d'exercices de géométrie (Hatier) puis une page ou était présentés
deux exercices avec utilisation de GeoPlan dont un était hors sujet (attention donc).
On veut démontrer que 3 points du plan, notés A’, B’, C’, sont alignés.
Stratégie 1 : montrer qu’ils sont les images de 3 points alignés A, B, C par :
Une symétrie axiale ;
Une symétrie centrale ;
Une rotation ;
Une translation.
Comment illustrer (= faire découvrir et convaincre de la vérité de) ces propriétés ?
Prenons l’exemple d’une symétrie axiale.
On propose aux élèves une figure constituée de
deux points fixes A et B et d’un point « mobile » M appartenant à la droite (AB) ;
une droite fixe (d) sécante avec la droite (AB).
1. On demande de construire, avec les fonctionnalités du logiciel, les images A’, B’ et M’ de A, de B et
de M, par la symétrie d’axe (d). On demande aussi de construire la droite (A’B’).
2. On demande de construire la trace de M’ lorsque M varie sur (d).
Cette trace se confond avec la droite (A’B’). Ainsi, à toute position du point M sur (AB) correspond un
point M’ sur (A’B’) ou encore : « lorsque M parcourt (AB), M’ parcourt (A’B’) ».
Cette manipulation permet d’observer et de se convaincre - que l’image par s de (AB) est incluse
dans (A’B’) = (s(A)s(B)).
On peut aussi observer que tout point de (A’B’) est bien l’image par s d’un point de (AB).
Remarque : la démonstration rigoureuse de la propriété peut être donnée à partir de la propriété
admise de la distance dans le plan : M
Î
[AB]
Û
AM + MB = AB.
On part de (d) définie par deux points fixes distincts A et B et en distinguant les cas M entre A et B, B
entre A et M, A entre M et B, on montre que, dans tous les cas, s(M) appartient à la droite (AB). On
peut même déduire de la démonstration la propriété supplémentaire : les points A, B, M et leur image
sont rangés dans le même ordre.
Réciproquement (après avoir fait remarquer - comme un corollaire de la définition d’une symétrie
axiale - que « M’ = s(M) implique M = s(M’) »), si un point Mappartient à (A’B’), alors le point s(M’)
appartient à l’image par s de (A’B’). Mais, cette image est incluse dans la droite (s(A’)s(B’)), c’est-à-
dire dans la droite (AB), notons M ce point : s(M’) = M. D’M’ = s(M) qui montre que tout point de
(A’B’) est bien l’image par s d’un point de (d). il en résulte que s((AB)) = (A’B’).
Stratégie 2 : montrer que (A’B’) // (B’C’) ou (A’C’).
Stratégie 3 : montrer que l’un des 3 points appartient au segment formé par les deux autres, par
exemple, B’ appartient à [A’C’] en montrant que A’B’+B’C’ = A’C’.
Stratégie 4 : Montrer que l’un des angles
·
' ' 'A B C
,
·
' ' 'A C B
,
·
' ' 'B A C
est un angle plat.
Stratégie 5 : Le plan étant rapporté à un repère, on montre que les coordonnées des 3 points vérifient
l’équation d’une même droite.
Exercice (Brevet) :
1. Dans un repère orthonormé (O, I, J), placer les points suivants : A(2 ; 3), B(5 ; 6), C(7 ; 4).
2. On admettra que AB =
32
et que BC =
22
. Calculer la distance AC et prouver que le
triangle ABC est rectangle en B.
3. Représenter le point D, image du point A par la rotation de centre B et d’angle 90° (dans le
sens contraire des aiguilles d’une montre).
4. Représenter le point M tel que
BM BA BC=+
uur uuur
uuur
. Quelle est la nature du quadrilatère
BCMA ?
5. a) Représenter le point N, image de D dans la translation de vecteur
BA
uur
.
b) Expliquer pourquoi les points B, C, D sont alignés.
c) Démontrer que les points A, M et N sont alignés.
La partie de cet exercice relative à l’alignement de 3 points peut être regardée :
comme une application de la stratégie 2 pour la question 5 ; b) ou de la stratégie 4 ;
comme une application de la stratégie 1 pour la question 5. c) ; après avoir remarquer que
BA CM DN==
uur uuur uuur
et donc que la translation de vecteur
BA
uur
transforme les points alignés B,
C, D en les points A, M, N.
Commentaire : l’usage des TICE ne joue pas un rôle décisif dans la résolution de cet exercice car
l’exercice est étroitement guidé vers la solution
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !