1
3.3 APPLICATIONS
3.3.1 Evaluation des tests diagnostiques
Objectif du test diagnostic : augmenter le plus possible la probabilité que la personne
soit réellement malade ou réellement saine selon le résultat d’examen.
Soit les 2 ensembles suivants :
On a alors 4 possibilités :
M+
M-
T+
VP
FP
T-
FN
VN
- Les personnes malades présentant un test positif = Vrais positifs (VP)
- Les personnes non malades présentant un test négatif = Vrais négatifs (VN)
- Les personnes malades présentant un tes négatif = Faux négatifs (FN)
- Les personnes non malades présentant un test positif = Faux positifs (FP)
On y détermine 4 caractéristiques :
SENSIBILITE (Se) : caractérise la capacité du test à être positif chez les sujets
malades.
Se = VP/(FN+VP)
SPECIFICITE (Spe) : caractérise la capacité du test à être négatif chez les sujets
non malades.
Spe =VN/(VN+FP)
M+
T+
DUSSEUX EMMANUELLE LE TELLIER LAURE
STATISTIQUES
Cours du 05.11.04
2
Mais ce qui intéresse en réalité le médecin, c’est la :
VALEUR PREDICTIVE POSITIVE (VPP) : caractérise la probabilité d’avoir un
sujet malade si le test est positif.
VPP = VP/(VP+FP)
VALEUR PREDICTIVE NEGATIVE (VPN) : caractérise la probabilité d’avoir
un sujet non malade si le test est négatif.
VPN = VN/(VN+FN)
Sous forme de probabilités, on pourra écrire :
Probabilité de la sensibilité : probabilité d’avoir un test positif face à un malade.
Se=P(T+/M+)
Probabilité de la spécificité : probabilité d’avoir un test négatif en l’absence de
maladie. Spe=P(T-/M-)
VPP = P(M+/T+)
VPN =P(M-/T-)
Arbre de probabilité conditionnelle décrivant les événements possibles :
T+ M+ et T+
M+ T- M+ et T-
T+ M- et T+
M- T- M- et T-
Chaque événement a une probabilité donnée :
3
Comme on a P(T+/M-) = 1 P(T-/M-)
Avec p= prévalence de la maladie = P(M+)
Exemple : Sensibilité = 0.9 . c’est un ‘bon test’
Spécificité =0.9 .
Prévalence =0.01 cad la fréquence de la maladie est de 1% : c’est une
maladie fréquente
Dans ce cas, quel est le risque que le patient soit malade si le test est positif ?
Propositions : -1 risque sur 10 ?
-9 risques sur 10 ?
-1 risque sur 2 ?
Pour répondre à cette question,
on peut soit calculer la VPP à l’aide de la formule énoncé plus haut.
VPP=0.083
ou bien appliquer ce test en prenant un chiffre de 1000 personnes dans
lesquelles on aura 990 M- et 10 M+ car la fréquence de la maladie est de
1%.
M+
M-
T+
VP=9
FP=99
T-
FN=1
VN=891
))/()(())/()(( )/().(
MTPMPMTPMP MTPMP
VPP
))1).(1(().( .SpepSepSep
VPP
)9.01()01.01()9.001.0( 9.001.0
VPP
)/().()(
)/().(
)(
)(
)/(
MTPMPetMTP
MTPMP
TP
etTMP
TMPVPN
)/().()/().(
)/().(
MTPMPMTPMP
MTPMP
VPN
))).1(())1.(().1( SpepSepSpep
VPN
4
VP = nbre de M+ x Se
FN = nbre de M+ - VP
VN = nbre de M- x Spe = 990 x 0.9 = 891
On calcule la VPP d’après ce tableau :
VPP =VP/(VP+FP) = 9/(9+99)= 0.089 donc inf à 1/10e.
La spécificité et la sensibilité du test ne changent pas mais c’est la prévalence de la maladie
qui va varier et donc modifier la valeur de VPP et VPN.
Les tests de dépistage ont pour but de repérer au sein de la population les personnes malades.
sur un échantillon de 1010 personnes, en supposant que la maladie a une prévalence de
1%.
EXEMPLE 1 :
Se = 0.9
Spe = 0.9
M+
M-
T+
VP=9
FP=100
T-
FN=1
VN=900
On en déduit alors que la VPP = 9/109.
EXEMPLE 2 :
Se = 0.9 Spe =0.5
M+
M-
T+
VP=9
FP=500
T-
FN=1
VN=500
On en déduit alors que la VPP =9/509.
Dans le cas des 2 exemples proposés ci dessus, on a modifié uniquement la spécificité
du test et on note une variation de la VPP ;
En diminuant la spécificité, la VPP a diminué (ce qui est logique puisque si on se
réfère à la formule de VPP, la spe diminue alors (1-Spe) augmente donc comme cette
expression est au dénominateur alors VPP diminue )
La diminution de la VPP signifie qu’on augmente l’événement d’avoir des personnes
non malades ayant un test positif.
5
Nouveau test pour la détection de l’infarctus du myocarde (IDM). Ce test est basé sur la
valeur de la CPK.
Dans un service de cardiologie, l’étude montre que sur 100 personnes, on en a 90
présentant une CPK élevée et 10 ayant une CPK inférieur à la normale.
Dans un quelconque autre service (Sujets témoins), l’étude montre que sur 100
personnes, on en a 10 présentant une CPK élevée et 90 ayant une CPK inférieur à la
normale.
D’où le rapport de cette étude :
Se = 0.9 = 90/100 (Toutes les personnes du service de cardiologie sont
supposées malades)
Spe = 0.9 (Toutes les personnes de l’autre service considéré sont supposées
non malades)
Par contre, on ne connaît pas la prévalence de la maladie dans la population donc VPP
et VPN ne peuvent pas être calculées : car les personnes de cette étude ne sont pas
représentatives de l’ensemble de la population.
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !