Université Cadi Ayyad Département de physique appliquée FST

Université Cadi Ayyad partement de physique appliquée
FST Guéliz Marrakech 2010-211
Devoir surveillé N°1
Module : Electromagnétisme Optique
///////////////////////////////////////////////////////////////////////////////////////////////
Exercice 1 (6pt)
Soit une coquille sphèrique de rayon interne R1 et de rayon externe R2 remplie par un diélectrique
LHI de constante diélectrique
. Le diélectrique contient aussi une densité de charge libre
.0
1) Déterminer les vecteurs D, E et P en tout points de l’espace.
2) Déterminer les charges de polarisations partout où elles existent.
3) En déduire la somme des charges de polarisation.
Exercice 2 (6pt)
Soient E0, B0, k et
quatre paramètres donnés. On considère les couples de champs vectoriels
suivants :
)cos(
0
0
),(
0
1
tkxE
trEa
tkxB
tr
cos(
0
0
),(
0
1
B
)cos(
0
0
),(
0
2
tkxE
trEb
0
)cos(
0
),( 0
2tkxBtr
B
1) Ces champs peuvent-ils êtres des champs électromagnétiques ?
2) Si oui, à quelles conditions ? Déterminer alors les distributions de charges
)(t
et
sources de ces champs.
3) a) Que devient l’expression de ces sources dans le cas ou :
00
k
.
b) Déterminer le vecteur de Poynting ainsi que sa valeur moyenne temporelle.
Exercice 3(8pt)
On considère une spire conductrice circulaire C indéformable et fixe, de centre O et de rayon
, de resistance R. Un aimant permanent que l’on assimilera à un dipôle magnétique
m
, se
déplace sur l’axe Oz de la spire. Cet aimant est animé d’un mouvement rectiligne uniforme de
vitesse
k
dt
dz
v
0
.
Dans la phase d’approche de la spire, l’aimant se présente le pôle nord en avant comme
indiqué sur le schéma ci-dessous.
1. Préciser, à l’aide d’un schéma, le sens du courant dans la spire dans les cas suivants :
a- On approche l’aimant de la spire, b) On éloigne l’aimant de la spire,
b- On approche l’aimant de la spire après l’avoir retourné.
Justifier dans chaque cas le sens choisi.
2. Le champ magnétique en un point M de la spire dérive du potentiel vecteur
2
0
4
)( rum
MA
( r = PM ,
PM
PM
u
)
a) Exprimer le champ électromoteur en tout point de la spire.
b) En déduire l’expression de la force électromotrice puis celle du courant i(t) qui
apparraissent dans la spire.
c) Dans quelle position de l’aimant le courant induit est-il maximal.
d) Tracer l’allure de variation du courant i = f(t) et commenter la courbe obtenue.
3. Montrer que le flux envoyé par l’aimant à travers la spire est donné par :
2/322
2
0)(2
)( z
m
t
4. Retrouver l’expression de la force électromotrice à l’aide de la loi de Faraday.
////////////////////////////////////////////////////////////////////////////////////////////////
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !