Chapitre 2 : Ecritures fractionnaires et quotients

Chapitre 1 : Ecritures fractionnaires et quotients
1. Ecritures fractionnaires
a) Rappel
Définition : Soit a et b deux nombres avec b 0, le quotient q = a ÷ b s’écrit
Error!
en écriture
fractionnaire
Quand a et b sont deux entiers, on parle de fractions.
a est le numérateur et b le dénominateur.
Remarque :
Tout nombre décimal est une fraction
Toute fraction n’est pas un nombre décimal.
Exemple :
...33,0
3
1
17 p 28
b) Simplification
Comment écrit-on habituellement la fraction
Error!
?
Règle de simplification : On peut multiplier ou diviser le numérateur et le dénominateur d’une fraction par
un même nombre sans changer cette fraction.
Exemple : Simplifier les fractions suivantes :
14
7
;
25
15
;
20
18
Définition : Quand on ne peut pas simplifier la fraction
Error!
on dit qu’elle est irréductible
On dit que l’on simplifie une fraction lorsque l’on fait en sorte que le numérateur et le dénominateur soient
les plus petits entiers possibles (elle devient irréductible).
18, 19, 20 p 28 22,23,24,26 p 29 27 p 29
2. Nombres décimaux et quotients :
a) Fractions et nombres décimaux
On peut écrire un nombre décimale ou un nombre en écriture fractionnaire sous la forme d’une fraction.
Pour cela on utilise la multiplication par 10, 100, 1000 …
Exemple : Ecrire les nombres suivants sous la forme d’une fraction
0,945 ;
Error!
Exo 43 p30.
b) Application aux quotients
Propriété : Le résultat d’un quotient ne change pas si on multiplie le dividende et le diviseur par un même
nombre.
Application :Toute division peut se ramener à une division euclidienne.
Pour effectuer la division de 1,56 par 2,5 on effectue la division de …
48, 49, 50 p 31
3. Comparaison de fractions
Activité 4 p 23
Méthode : Pour comparer deux fractions, on les met au même dénominateur puis on les range dans l’ordre
de leurs numérateurs.
Exemple : Ranger dans l’ordre croissant :
7
3
;
28
13
;
14
8
;
2
1
Exo 34, 36, 37 p 29 78, 80, 82 p 33
Remarque :
Si deux fractions ont le même numérateur, elles sont rangées dans l’ordre inverse de leurs dénominateurs.
On peut aussi les comparer par rapport à 1.
4. Fractions et proportions.
On rencontre très souvent les fractions dans les problèmes liés aux proportions.
Activité 6 p 23
Dire que 4 sur 10 au collège est un garçon signifie que
Error!
des élèves du collège sont des garçons.
38 p 29 41 p 30 92, 93 p 34
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !