Platon élabore la première grande construction idéaliste de l’histoire de la pensée.
Dans cette construction, la Théorie des Idées – selon laquelle la connaissance ne peut se
fonder sur les objets du monde, toujours changeants et relatifs à nos sens, mais pour être vraie,
doit passer de la conjecture à la croyance, puis, au moyen de la mesure, à la connaissance
mathématique et enfin à la connaissance rationnelle, saisissant la réalité elle-même, c’est-à-
dire l’Idée (Eidos,forme), une essence, une perfection qui subsiste en soi et pour soi (le Bien
en soi, la Justice en soi, la Beauté en soi…).
Pour Platon le monde est compréhensible parce qu’il a une structure. Il a une structure
parce qu’il est une œuvre d’art créée par un Dieu qui est un mathématicien. Plus exactement,
la structure du monde est faite des pensées de Dieu, qui sont mathématiques. Cette idée a
traversé les siècles. On la retrouve au XVIIe chez Spinoza ou chez Liebniz, et force est de
reconnaître qu’elle est aujourd’hui, mutatis mutandis, présente à l’esprit de nombreux
mathématiciens et physiciens. Pourquoi les Grecs étaient-ils tentés de voir le monde comme
compréhensible ? En raison de la beauté de la géométrie et des nombres… Symétrie et
simplicité fondent l’intelligibilité du monde.
Platon fait référence à une réalité véritable pour expliquer que notre monde, qui n’en
est qu’une image, possède pourtant assez de régularité et de permanence pour permettre à
l’homme de penser, de parler et d’agir. Pour Platon, notre monde est, grâce aux
mathématiques, un kosmos, dans lequel, autant que possible, règnent ordre et beauté.
Il n’y a pas d’enseignement mais réminiscence. La connaissance est en réalité
« réminiscence ». Lorsqu’un homme acquiert une connaissance, c’est que son âme se souvient
de ce qu’elle savait déjà avant son incarnation. Toute connaissance est le souvenir d’un état
antérieur où l’âme possédait une vue directe de Idées.
Les mathématiques nous offrent l’assurance qu’il existe bien une connaissance
indépendante de l’expérience sensible. Leurs méthodes et leurs structures fournissent de plus
un modèle.
L’Idée platonicienne, n’est pas une notion générale et abstraite, elle est conçue a
priori, comme les objets idéaux de la pensée mathématique. N’entendons pas que l’Idée
platonicienne est innée, que notre esprit la trouve en lui toute faite ; Platon précise au
contraire qu’elle ne peut être formée qu’à l’occasion des données sensibles ; mais elle n’est
pas contenue en elles. Ce n’est pas de la comparaison des objets ronds que j’ai tiré l’idée du
cercle ; mais c’est l’imperfection des cercles empiriques qui m’oblige à concevoir la
circularité idéale définie par l’égalité des rayons ; et, si mon esprit est capable de former des
idées a priori, au moyen de pures relations, c’est, explique Platon, parce que notre âme, avant