ETUDE DE LA MISE SUR ORBITE D`UN SATELLITE La loi de la

publicité
ETUDE DE LA MISE SUR ORBITE D’UN SATELLITE
La loi de la gravitation universelle de Newton, est celle selon laquelle deux points matériels de masse m 1 et m2,
situé à une distance r l’un de l’autre, s’attirent mutuellement avec des forces directement opposées dont
l’intensité commune F est donnée par la relation :
𝐹 = 𝐺.
𝑚1 . 𝑚2
𝑟2
La constante de gravitation universelle, a pour valeur 𝐺 = 6,7. 10−11 (en unité SI)
Hypothèses : La terre sera considérée comme une sphère homogène de masse 𝜇 = 6,0. 1024 𝑘𝑔 et de rayon 𝑅 =
6,4. 106 𝑚 ; elle se comporte alors pour le phénomène de gravitation universelle comme un point confondu avec
son centre d’inertie dans lequel est concentré toute sa masse. Elle est dépourvue d’atmosphère et effectue une
rotation complète sur elle-même en T=86400s.
Les dimensions du satellite seront négligées devant la distance entre le centre de la Terre et le satellite.
On ne tiendra pas compte de l’action du Soleil et des autres planètes.
On désire placer sur une orbite terrestre un satellite de masse m=500g, à l’aide d’une fusée dont la masse, y
compris celle du satellite, est M.
1°) Calculer l’accélération g0 de la pesanteur à l’altitude O. Et montrer que l’accélération g en un point situé à
l’altitude h est
𝑔 = 𝑔0 .
𝑅2
(𝑅 + ℎ)2
2°) A partir du travail des forces intérieures au système {Terre-satellite}, montrer que l’énergie potentielle de
pesanteur peut se mettre sous la forme :
𝐸𝑝 = −𝐺
𝜇. 𝑚
𝑟
Où r représente la distance ( centre de la terre – satellite ), si l’on choisit de considérer cette énergie comme
nulle lorsque le satellite est infiniment éloigné de la terre.
3°) En déduire quelle doit être la vitesse minimum qu’il faut communiquer au satellite placé au niveau du sol
pour qu’il échappe à l’attraction terrestre.
SOLUTION
1°) Calcul de g0
Le poids d’un corps de masse M est la force d’attraction qui s’exerce entre ce corps et la Terre de masse 𝜇.
D’après la loi de gravitation universelle, l’intensité du poids est
𝑃=𝐺
𝜇. 𝑀
,
𝑅2
R étant égal au rayon de la Terre lorsque le corps est à l’altitude zéro d’où :
𝑃=𝐺
𝜇. 𝑀
𝐺𝜇
= 𝑀𝑔0 → 𝑔0 = 2
𝑅2
𝑅
Application numérique :
Comme G= 6,7.10-11 ; 𝜇 = 6,0. 1024 𝑘𝑔 ; R=6,4.106m , on a :
𝑔0 =
6,7.10−11 .6,0.1024
(6,4)2 .1012
ainsi
g0=9,81m.s-2 ;
d’où la relation :
𝒈 = 𝒈𝟎
𝑹
(𝑹 + 𝒉)𝟐
Un calcul analogue au précédent montre, en posant r= R+h, que :
𝑔=𝐺
D’où :
𝜇
𝑟2
𝑔=𝐺
Soit :
𝜇
𝑅2
∗
𝑅2
𝑟2
𝑔 = 𝑔0 ∗
𝑅2
(𝑅+ℎ)2
2°) – Energie potentielle de pesanteur du satellite
Projetons sur l’axe Cz :
-
La projection de 𝑚𝑔⃗ est – 𝑚𝑔
La projection de ⃗⃗⃗⃗⃗⃗⃗
𝐴𝐴′ 𝑒𝑠𝑡 ̅̅̅̅̅
𝐴𝐴′ = 𝑑𝑟, 𝑒𝑛 𝑝𝑜𝑠𝑎𝑛𝑡 ̅̅̅̅
𝑂𝐴 = 𝑟
L’expression du travail devient :
𝑑𝑤 = −𝑚𝑔𝑑𝑟 = −𝑚𝑔0
𝑅2
𝑑𝑟
𝑟2
En supposant g constant pour le déplacement dr.
On sait que le travail des forces de pesanteur soit égal à la diminution de l’énergie de pesanteur (ou à
l’opposé de la variation) donc
𝑑𝑤 = −𝑑𝐸𝑃
(𝑝𝑜𝑢𝑟 𝑢𝑛 𝑝𝑒𝑡𝑖𝑡 𝑑é𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑑𝑟)
D’où : 𝑑𝐸𝑃 = 𝑚𝑔0
𝑅2
𝑟2
𝑑𝑟
Pour le déplacement de r à l’infini, on a :
+∞
+∞
∫
𝑑𝐸𝑃 = ∫
𝑟
𝑟
𝑚𝑔0
𝑅2
1
𝑑𝑟 => (𝐸𝑃 )∞ − (𝐸𝑃 )𝑟 = 𝑚𝑔0 𝑅2 (+ )
𝑟2
𝑟
(𝐸𝑃 )∞ = 0
Or l’énoncé suppose :
(𝐸𝑃 )𝑟 = −𝑚𝑔0
𝑅2
𝜇
𝒎𝝁
𝑜𝑢, 𝑐𝑜𝑚𝑚𝑒 𝑔0 = 𝐺 2 𝑑 ′ 𝑜ù (𝑬𝑷 )𝒓 = −𝑮
𝑟
𝑅
𝒓
3°) – Vitesse de libération du satellite au niveau du sol.
Le système Terre-Satellite est un système isolé. Son énergie mécanique se conserve donc.
Calculons l’énergie mécanique totale E à l’altitude O, c’est-à-dire pour r = R :
1
𝑚𝜇
𝐸 = (𝐸𝐶 )𝑟=𝑅 + (𝐸𝑃 )𝑟=𝑅 => 𝐸 = 𝑚𝑣02 − 𝐺
2
𝑅
L’Energie mécanique E’ à l’altitude h c’est-à-dire r=(R+h) :
1
𝑚𝜇
𝐸 ′ = (𝐸𝑐 )𝑟=𝑅+ℎ + (𝐸𝑃 )𝑟=𝑅+ℎ => 𝐸 ′ = 𝑚𝑣 2 − 𝐺
2
𝑅+ℎ
La conservation de l’énergie s’exprime par E = E’ soit :
1
𝑚𝜇 1
𝑚𝜇
𝑚𝑣02 − 𝐺
= 𝑚𝑣 2 − 𝐺
2
𝑅
2
𝑅+ℎ
La vitesse 𝑣0 = 𝑣𝑙 avec laquelle il faudrait lancer du sol le satellite pour qu’il échappe à l’attraction
terrestre (vitesse de libération) est obtenue en exprimant que v=0 pour h infinie (si v=0 pour h fini, le
satellite retomberait) d’où :
1
𝑚𝜇
𝑚𝑣𝑙2 − 𝐺
=0
2
𝑅
Et par suite :
𝜇𝑚
𝑣𝑙2 = 2𝐺
=> 𝑣𝑙 = √2𝑔0 𝑅
𝑅
Application numérique :
𝑔0 = 9,81𝑚. 𝑠 −1 𝑒𝑡 𝑅 = 6,4 ∗ 106 𝑚
On a :
𝑣𝑙 = √2 ∗ 9,81 ∗ 6,4 ∗ 106 𝑠𝑜𝑖𝑡 𝑣𝑙 = 11,206𝑚. 𝑠 −1 𝑜𝑢 11,206𝑘𝑚. 𝑠 −1
Téléchargement
Explore flashcards