SYNTHÈSE DU MÉTHANOL
Le méthanol est préparé industriellement, en présence d'un catalyseur, par la réaction:
(1) CO (g) + 2 H2 (g) ==== CH3OH (g) symbolisée par A + 2 B === C.
On admettra que tous les gaz sont parfaits et on prendra R = 8,314 J K-1 mol-1.
Soient a, b, c les nombres de moles initiales de CO, H2 et CH3OH et nA, nB, nC les nombres de moles à une date
quelconque.
L'avancement de la réaction est défini par
= a - nA =
1
2
(b - nB) = nC - c et sa valeur à l'équilibre sera notée
e.
1) Lors d'une expérience à 309°C et sous pression constante égale à 172,2 bars, la composition molaire du mélange
à l'équilibre est: H2 : 60,9% ; CO : 13,5% ; CH3OH : 21,3% ; gaz inertes : 4,3%.
a. Calculer la constante d'équilibre Kp relative aux pressions partielles, à 309°C.
b. L'état standard correspond à la pression de référence égale à 1 bar = 105 Pa.
Quelle serait la valeur de Kp si on choisissait l'atmosphère pour pression de référence? (1 atm = 101 325 Pa).
c. Le mélange à l'équilibre précédent a été obtenu à partir des conditions initiales: a = 1 ; c = 0 ; b non précisé.
Calculer l'avancement
e de la réaction à l'équilibre et le nombre de moles d de gaz inertes.
2) En répétant l'expérience précédente à diverses températures, on peut établir la relation ln Kp = f(T).
On peut aussi obtenir cette relation à l'aide de données thermodynamiques.
Les tables de grandeurs standard à 298 K donnent les enthalpies de formation Hf, les entropies absolues et
les capacités thermiques molaires à pression constante Cp:
CO (g)
H2 (g)
CH3OH (g)
Hf (kJ mol-1)
- 110,5
0
- 201,2
S° (J K-1 mol-1)
197,9
130,7
238,0
Cp (J K-1 mol-1)
28,6
27,8
8,4 + 0,125 T
Seule la capacité thermique du méthanol gazeux est supposée varier de façon appréciable avec la température.
a. Exprimer numériquement l'enthalpie standard
rH° de la réaction (1) en fonction de T.
b. Calculer, à 298 K, l'enthalpie libre standard
rG° de la réaction (1) et la constante d'équilibre Kp.
c. Exprimer numériquement ln Kp en fonction de T.
d. L'entropie absolue standard de CH3OH (g) est une donnée du tableau précédent que l'on doit calculer parce
que le méthanol gazeux pur n'existe pas à 298 K et sous une pression égale à 1 bar.
A 298 K, le méthanol gazeux est en équilibre avec le méthanol liquide sous une pression égale à 16510 Pa,
l'enthalpie de vaporisation valant alors 37,3 kJ mol-1.
Expliquer, à l'aide du 3ème principe de la thermodynamique, comment on peut calculer l'entropie absolue
standard du méthanol liquide à 298 K. Préciser les grandeurs thermodynamiques nécessaires pour ce calcul.
Par quelles étapes réversibles peut-on passer du méthanol liquide à 298 K et sous un bar, au méthanol
gazeux à la même température et à la même pression?
En déduire l'entropie absolue standard du méthanol liquide (supposé incompressible) à 298 K connaissant
l'entropie absolue standard du méthanol gazeux à 298K (238,0 J K-1 mol-1).
3) Soit le mélange initial: a = 1 mole, b = 2 moles, c = 0.
On note G0 l'enthalpie libre de ce mélange initial, G
l'enthalpie libre du mélange correspondant à un
avancement
de la réaction isotherme et isobare et
G = G
- G0.
On rappelle que l'enthalpie libre d'un mélange est G =
niµi, ni étant le nombre de moles et µi le potentiel
chimique de l'espèce i (i = A, B ou C).
a. Définir l'affinité chimique A de la réaction (1) à partir de G
ou de
G.
b. Soient p0i et pi les pressions partielles correspondant à
= 0 et à
quelconque.
Exprimer les pressions partielles des trois constituants en fonction de
et de la pression totale P.
En déduire la relation
G = 3 RT ln
p
pA
A0
-
A.
c. La température est fixée à 523 K et on désire un avancement
e de la réaction, à l'équilibre, égal à 0,8.
On prendra Kp(523) = 2,0 10-3.
Sous quelle pression totale faut-il travailler? Quelle est la valeur de
G = G
e - G0?
4) A l'échelle industrielle, il est difficile, malgré un refroidissement du catalyseur, de maintenir la température
constante dans le milieu réactionnel.
Si aucune précaution n'était prise, la réaction (1) serait plus proche des conditions adiabatiques que des
conditions isothermes.
Dans cette partie, on suppose que la chaleur dégagée par la réaction à température constante sert uniquement à
élever la température des gaz formés (CH3OH) ou présents (CO et H2 n'ayant pas réagi à l'équilibre).
Le mélange initial de même composition que dans la partie 3) est à la température de 523 K et à la pression de
156,5 bars, pression maintenue constante lors de l'échauffement adiabatique des gaz.
a. Exprimer
H1, quantité de chaleur dégagée par la réaction à 523 K, en fonction de
e.
b. Exprimer
H2, quantité de chaleur absorbée par le mélange gazeux, en fonction de
e et de la température
finale T.
c. En déduire une relation entre
e et T.
Quelle autre relation existe-t-il entre ces deux grandeurs?
d. Vérifier que (
e = 0,1286, T = 670,2 K) est une solution approchée de ce système d'équations.
La comparaison de cette valeur de
e avec celle de
e isotherme montre que le refroidissement du catalyseur
est indispensable pour avoir un taux de conversion de CO convenable.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !