Th´eorie des groupes/Group Theory
Th´eorie des Nombres/Number Theory
A FORMAL THEORY OF EISENSTEIN SERIES
Kˆ
azım ˙
Ilhan ˙
Ikeda
May 1995
Abstract. The definition of the Eisenstein series E
E
E(Z, s;k, Γ) on the symplectic and uni-
tary groups Gis well-known. We introduce a series E(Z, λ) whose construction involves a
5-tuple {G, P, M, W, ²}satisfying certain conditions. We prove that, if λ:Mn×2n(k)C
is a locally-constant function, then the series E(Z, λ) is a finite linear combination of G-
transforms of the Eisenstein series E
E
E(Z, s;k, Γ) whose coefficients are products of certain
Hecke L-functions.
UNE TH´
EORIE FORMELLE DES S´
ERIES d’EISENSTEIN
R´
esum´
e. Sur les groupes symplectique et unitaire Gla d´efinition des s´eries d’Eisenstein
E
E
E(Z, s;k, Γ) est bien connue. Dans cette note nous introduisons une s´erie E(Z, λ) dont la
construction fait intervenir un 5-tuplet {G, P, M, W, ²}satisfaisant `a certaines conditions.
Nous d´emontrons que, si λ:Mn×2n(k)Cest une fonction localement constante, alors
la s´erie E(Z, λ) est une combinaison lin´eaire finie des G-transform´es des s´eries d’Eisenstein
E
E
E(Z, s;k, Γ) dont les coefficients sont produits de certaines fonctions Lde Hecke.
Version fran¸caise abr´eg´ee. §1. Consid´erons la donn´ee (que nous appelons une donn´ee
d’Eisenstein dans la suite) d´efinie par un 5-tuplet {G, P, M, W, }o`u West un
ensemble non-vide, Get Msont des groupes de transformations sur W, et Pest un
sous-groupe de Gsatisfaisant aux conditions suivantes:
(i) Gop`ere transitivement `a droite sur Wet Mop´ere fid`element `a gauche de W. Ces
actions sur Wsont compatibles comme dans (1); (ii) T²Po`u T²d´esigne le groupe
d’isotropie de dans G;(iii) Il existe un morphisme surjectif d:PMtel que le carr´e
(2) est commutatif, o`u r²est d´efini par l’action `a droite de Psur et l²est l’application
d´efinie par l’action `a gauche de Msur ;(iv) Il existe un G-espace Het un groupe
G=GL(C)avec un facteur d’automorphie j:G×H→ G `a valeurs dans Gtel que la
condition (3) est satisfaite pour tous πPet zH; o`u δ:M→ G est un morphisme.
§2. (Tous les calculs du §2 sont formels.) Soit Γ un sous-groupe de Get soit ∆ un sous-
groupe de Mv´erifiant la condition (4). Etant donn´e un caract`ere ψ: Γ T, v´erifiant
(7), o`u Bd´esigne un syst`eme complet de repr´esentants de P\G/Γ, on consid`ere les s´eries
E(z, λ, ψ) comme dans (8), o`u λ:WCest une application quelconque v´erifiant (6).
La s´erie d’Eisenstein E
E
E(z, Γ, ψ) de G(relative `a Γ et `a ψ) est d´efinie comme dans (9).
On d´emontre au §2 (Th´eor`eme 2.3) que la s´erie E(z, λ, ψ) est une combinaison lin´eaire
des β-transform´es des s´eries d’Eisenstein E
E
E(z, βΓβ1, ψβ) pour βB.
This report announces some of the results of the author’s Ph.D. thesis, Princeton University 1993.
The author heartily thanks Goro Shimura for his help and encouragement all through author’s graduate
study. He also thanks the referee for his valuable suggestions.
Typeset by A
M
S-T
E
X
1
§3. Dans cette section, Fd´esigne un corps de nombres totalement r´eel de degr´e m
et Kd´esigne un CM -corps ayant Fpour sous-corps totalement r´eel maximal. Pour
uniformiser notre expos´e, le symbole kesigne soit F, soit Ks’il n’y a aucune confu-
sion et Okd´esigne l’anneau des entiers de k. On note a
a
al’ensemble a
a
aFdes premiers
archim´ediens de Fou bien d’un CM-type fix´e de K, et h
h
hd´esigne l’ensemble des premiers
non-archim´ediens de F. Pour XMn×s(K), nous posons X=tXι, o`u ι:KK
est l’involution de Galois sur F, et Jn=µ01n
1n0M2n(Q). Nous consid´erons les
groupes alg´ebriques Sp(n, F ) et SU(n, K) d´efinis sur Fque nous noterons simplement
par Gk. Nous introduisons
Gkcomme dans (12). Notons Pkle sous-groupe parabolique
de Gkcorrespondant `a la partition (n, n), Qkla composante de Levi et Rkle radi-
cal unipotent de Pk. Les sous-groupes
Pk,
Qket
Rkde
Gksont d´efinis de la mˆeme
mani`ere. Soit Wk={αMn×2n(k)|αJnα= 0,rang(α) = n}. On d´emontre que
{
Gk,
Pk, GLn(k), Wk,(0n,1n)}est une donn´ee d’Eisenstein. Pour un sous-groupe congru-
ence Γ de
Gk(cf [6] pp 424), efinissons la erie d’Eisenstein E
E
E(Z, s;k, Γ) comme dans
(15), en supposant que Qνa
a
adet(µν(xν, zν))k= 1 pour tout xPkΓ pour que la somme
ait un sens. Soit ∆ un sous-groupe de congruence de GLn(k) suffisamment petit pour
que δ(∆) = 1. Notons par S(V) l’espace des fonctions localement constantes d´efinies sur
un espace vectoriel Vsur Q`a valeurs dans C. Consid´erons un ´el´ement λ∈ S(Mn×2n(k)),
tel que λ(∆wΓ) = λ(w) pour wMn×2n(k). Suivant la notation de (5), introduisons la
somme E(Z, λ) comme dans (16).
Th´eor`eme 3.1. Soit Γun sous-groupe de congruence de
Gksatisfaisant `a la condition
Qνa
a
adet(µν(xν, zν))k= 1 pour tout xPkΓet tout Z= (zν)νa
a
aHa
a
aet soit
un sous-groupe de congruence de GLn(k)tel que δ(∆) = 1. Soit λ:Mn×2n(k)C
une fonction localement constante avec la propri´et´e λ(∆wΓ) = λ(w)pour wMn×2n(k).
Alors, la s´erie E(Z, λ)est une combinaison lin´eaire finie des β-transform´es E
E
E(Z, s :
k, βΓβ1)de la s´erie d’Eisenstein dont les coefficients sont des sommes de produits de
s´eries Lde Hecke.
1.PRELIMINARIES. Consider the data (which we call an Eisenstein datum in the
sequel) defined by a 5-tuple {G, P, M, W, }, where Wis a (non-empty) set, Gand M
transformation groups on Wand Pa subgroup of Gsatisfying the following conditions:
(i) Gacts transitively on the right of Wand Macts faithfully on the left of W. These
actions on Ware compatible in the following sense:
(1) (mw)g=m(wg),for every mM,wWand gG.
(ii) T²P, where T²denote the isotropy group of in G.
(iii) There exist a surjective morphism d:PMsuch that the square
(2)
Pr²
W
idP
yx
l²
Pd
M
2
is commutative, where r²:PWis defined via the right action of Pon and
l²:MWis the map defined by the left action of Mon .
(iv) There exists a G-space Hand a group G=GL(C)with a G-valued factor of auto-
morphy j:G×H→ G (that is the cocycle relation j(g1g2, z) = j(g1, g2(z))j(g2, z), for
g1, g2Gand for zHis satisfied) such that
(3) j(π, z) = δ(d(π)),
for every πPand zH; where δ:M→ G is a morphism.
Let {G, P, M, W, }be an Eisenstein datum. Define the mapping τ:GWby
g7→ τ(g) = g, for gG. Then we readily have the following
Lemma 1.1. (i) The map τ:GWis a surjection with τ(1) = ,τ(g1g2) = τ(g1)g2
and τ(πg) = d(π)τ(g)for every g, g1, g2Gand πP;(ii) T²=Ker(d);(iii) j(g, z) =
1for every gT²and zH;(iv) The mapping τ:GWinduces a bijection
ιτ:T²\GWdefined by T²g7−τ(g)for gG.
2.A FORMAL THEORY OF EISENSTEIN SERIES. In this paragraph all of the
computations are formal and we ignore the convergence questions. Let Γ be a subgroup of
Gand Bbe a complete set of representatives of the double-coset decomposition P\G/Γ of
Gwith respect to (P, Γ). That is, there is the disjoint union G=FβBP βΓ. For βB,
PβΓβ1becomes a transformation group on the set βΓ, where the action of PβΓβ1
on βΓ is defined via left multiplication. Let Sβbe a complete set of representatives of
the orbits in βΓ relative to PβΓβ1. The proof of the following Lemma is elementary,
so it is omitted.
Lemma 2.1. (i) G=FβBP Sβ;(ii) The set Wis the disjoint union of the sets M Sβ
and the map defined by (m, x)7→ mx is a bijection from FβBM×Sβto W.
Let ∆ be a subgroup of M(then ∆ is a transformation group on W, where the action
of ∆ on Wis induced from that of Mon W). The orbits ∆\Win Wrelative to ∆ have
the following description:
Lemma 2.2. \W=FβB{rx |r\M, x Sβ}.
Assume that
(4) d(PβΓβ1)Ker(δ),
for every βB. So there is the canonical induced mapping δ: ∆\M→ G. As a
notation (which are clearly well-defined) introduce:
(5) j(g, z) = j(τ(g), z) and j(x, z) = j(w, z),
for gG,x= ∆w\Wand zH. Take λ:WCany map satisfying the
condition
(6) λ(∆wγ) = ψ(γ)λ(w),
for any γΓ and wWwith a character ψ: Γ T={zC:|z|= 1}such that
(7) PβΓβ1Ker(ψ),
3
for every βB. We now introduce the following series:
(8) E(., λ, ψ) : H→ G defined by E(z, λ, ψ) = X
x\W
λ(x)j(x, z),
for zH, which is a well-defined function by virtue of the assumption (6).
(9) E
E
E(., Γ, ψ) : H→ G defined by E
E
E(z, Γ, ψ) = X
x(PΓ)\Γ
ψ(x)j(x, z),
for zH, which is a well-defined function, since d(PΓ) Ker(δ) and PΓ
Ker(ψ). The series introduced in (9) is the Eisenstein series of G(with respect to Γ and
ψ: Γ T). For βB, denote by ψβ:βΓβ1Tto be the character which factors
through
(10) ψβ:βΓβ1β1conjugation
Γψ
T.
Consider the Eisenstein series E
E
E(z, βΓβ1, ψβ), which is well-defined since d(PβΓβ1)
Ker(δ) and PβΓβ1Ker(ψ). Then for βB, the β-transform of E
E
E(., βΓβ1, ψβ) :
H→ G is given by
(11) E
E
E||β(z, βΓβ1, ψβ) = X
xSβ
ψ(β1x)j(x, z),for zH.
We now state the main theorem: the series E(z, λ, ψ) is a linear combination of β-
transforms of Eisenstein series E
E
E(z, βΓβ1, ψ) for βB. More precisely,
Theorem 2.3. For any zH,E(z, λ, ψ) = PβBLβE
E
E||β(z, βΓβ1, ψβ)where Lβ=
Pr\Mλ(rβ)δ(r)for βB.
3. APPLICATION OF THE FORMAL THEORY OF EISENSTEIN SE-
RIES. Let Fbe a totally real algebraic number field of degree mand KaCM-field
with the maximal totally real subfield F(i.e Kis a totally imaginary quadratic extension
of F). To make our exposition uniform, the symbol kwill denote either For Kif there
is no fear of confusion and Okwill denote the ring of integers of k. We denote by a
a
aeither
a
a
aFthe set of archimedean primes of For a fixed CM -type of Kand h
h
hwill denote the
set of non-archimedean primes of F. We call ιthe Galois involution of K/F . Let
Gkbe
the algebraic group defined over Fby
(12)
Gk={XGL2n(k)|XJnX=Jn},
where Jn=µ01n
1n0M2n(Q) and Xdenotes respectively, the transpose tXin
the totally real case k=F, and the transpose-conjugate tXιin the CM-case k=K.
We denote the group
GkSL2n(k) simply by Gk. Let Pbe the parabolic subgroup of
Gcorresponding to the partition (n, n), Qthe Levi component and Rthe unipotent
radical of P. The subgroups
P,
Qand
Rof
Gare defined likewise. Let Wk={α
Mn×2n(k)|αJnα= 0,rank(α) = n}. The surjection τ:
GkWkdefined by
4
τ(X) = (0n,1n)X= (cX, dX) for X=µaXbX
cXdX
Gkinduces a right transitive action
of
Gkon Wkas τ(X)Y=τ(XY ) for Xand Yelements of
Gk. Let d:
PkGLn(k) be
the surjective homomorphism defined as d(X) = dXfor X=µaXbX
0dX
Pk. Then
we have the commutative square (2). The group GLn(k) acts faithfully on Wkfrom the
left by m(c, d) = (mc, md) for mGLn(k) and (c, d)Wk. The right action of
Gkand
the left action of GLn(k) on Wkare clearly compatible. The isotropy subgroup T(0n,1n)
of (0n,1n) in
Gkis the unipotent radical
Rkof
Pk. The local archimedean group
Gk
(νa
a
a) acts on the symmetric space
Hk=½{ZMn(C)|tZ=Z, Im(Z)>0},k=F,
{ZMn(C)|i(tZZ)>0},k=K,
as α(Z) = (aαZ+bα)(cαZ+dα)1for α
Gkand ZHk. The map µν:
Gk×Hk
GLn(C) defined by µν(α, z) = cαz+dαis a GLn(C)-valued factor of automorphy of
Gk
on Hk. Following the notation of [6], we introduce
(13) Jk,s(x, Z) = Y
νa
a
a
det(µν(xν, zν))k|det(µν(xν, zν)) |s,
where Z= (zν)νa
a
aHa
a
a
k,xG GA,kZand sC. It is clear that
(14) Jk,s(π, Z) = Nk/Q(det(d(π)))k/[k:F]|Nk/Q(det(d(π))) |s/[k:F],for π
Pk.
So the morphism δ:GLn(k)C×,δ(g) = Nk/Q(det(g))k/[k:F]|Nk/Q(det(g)) |s/[k:F]for
gGLn(k) satisfies δ(d(π)) = Jk,s(π, Z) for every π
Pkand ZHa
a
a
k. Hence we have
shown that: {
Gk,
Pk, GLn(k), Wk,(0n,1n)}is an Eisenstein datum.
For a congruence subgroup Γ of
Gk(cf [6] pp 424), define the Eisenstein series
(15) E
E
E(Z, s;k, Γ) = X
α(PkΓ)\Γ
Jk,s(α, Z)1
for Z= (zν)νa
a
aHa
a
a
k,sC,kZ; provided that Qνa
a
adet(µν(xν, zν))k= 1 for
every xPkΓ to make the sum meaningful. The series E
E
E(Z, s;k, Γ) converges for
Re(k+s)>½n+ 1 (k=F)
2n(k=K). Let ∆ be a sufficiently small congruence subgroup of
GLn(k) such that δ(∆) = 1. Let S(V) denote the space of locally constant functions
VCon a vector space Vover Q. Recall that a function :VCis called
locally constant, if there exist two lattices L1and L2of Vso that (x) = 0 if x /L1
and (x) = (y) if xy(mod L2). Consider an element λ∈ S(Mn×2n(k)), such that
λ:Mn×2n(k)Csatisfies the condition λ(∆wΓ) = λ(w) for wMn×2n(k). Following
the notation (5), introduce the sum
(16) E(Z, λ) = X
x\Wk
λ(x)Jk,s(x, Z)1,
for ZHa
a
a
k. Theorem 2.3 yields E(Z, λ) = PβBLβE
E
E||β(Z, s;k, βΓβ1), where B
is a complete set of representatives of
Pk\
Gk/Γ which is known to be a finite set and
Lβ=Pr\GLn(k)λ(rτ(β))Nk/Q(det(r))k/[k:F]|Nk/Q(det(r)) |s/[k:F]. Such Dirichlet
series are studied by Shimura in [7] (pp. 309-313). We state the main theorem of this
paragraph. The proof utilizes Proposition 9.2 of [7].
5
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !