Comment les biologistes sont aujourd`hui capables de cultiver des

publicité
Atlantico.fr
10 août 2015
Comment les biologistes sont aujourd’hui capables de cultiver des organes
Remplacer un organe défaillant par un autre est devenu un acte chirurgical courant, mais qui est
limité par les dons d’organes. Les biologistes sont désormais capables d’obtenir en culture
toutes sortes d’organoïdes humains, versions miniatures de nos membres.
Remplacer un organe défaillant par un
autre est devenu un acte chirurgical
courant, mais qui est limité par les dons
d’organes. Comment les biologistes sont-ils
capables d’obtenir en culture toutes sortes
d’organoïdes humains (versions miniatures
de nos organes) ?
Hervé Seitz : Il faut d'abord
expliquer que ce ne sont pas
"toutes
sortes"
d'organoïdes
humains, mais seulement des
organoïdes de quelques organes
bien précis (le rein, le foie,
l'intestin, la rétine ou le cerveau,
par exemple).
On appelle « différenciation » le processus d'acquisition de caractéristiques spécifiques à un type
cellulaire donné : c'est ce processus naturel qui fait que, in vivo, à partir d'une cellule unique (l'ovule
fécondé par le spermatozoïde), le développement de l'organisme aboutit à une organisation complexe,
avec de multiples types cellulaires (des fibres musculaires, des neurones, des globules rouges, des
cellules de la peau, etc.).
C'est parce que l'ovule fécondé se divise en de multiples cellules, qui, individuellement, vont ensuite
s'engager dans des voies de différenciation particulières, que l'organisme adulte est finalement constitué
d'une grande variété de types cellulaires.
Ces processus sont étudiés depuis longtemps, et ça fait maintenant quelques années qu'on maîtrise
assez bien la différenciation de cellules-souches en des types cellulaires bien précis, ex vivo, dans des
boîtes de Pétri. Il s'agit en général d'ajouter certains composés biochimiques dans le milieu de culture
des cellules (ce sont des composés qui existent in vivo dans l'embryon en développement, et qui
induisent ces différenciations). Le problème, c'est que, si on obtient effectivement des cellules
différenciées, elles forment en général un amas désorganisé, elles ne s'agencent pas comme dans un
organe naturel. Soit elles sont simplement réparties en deux dimensions sur le fond de la boîte de Pétri,
soit elles forment de petits agrégats.
Les découvertes qui ont abouti à la fabrication de ces organoïdes viennent de l'étude des processus qui
contrôlent naturellement la mise en place des organes dans le développement de l'embryon. Des
expériences ont mis en évidence les impressionnantes capacités d'auto-organisation des cellules : d'une
part, il existe des mécanismes d'attraction et de répulsion entre les cellules de différents lignages
cellulaires (qui aboutiront chacun à certains types cellulaires différenciés), qui ségrègent naturellement
les différents types cellulaires d'une culture, pour former des structures organisées (par exemple, des
regroupements de cellules du même type, ou au contraire, des agencemenents alternés de différents
types cellulaires). Ces phénomènes sont dus à des protéines présentes à la surface des cellules, qui
contrôlent l'adhérence des unes avec les autres. D'autre part, il arrive aussi que la voie de différenciation
d'une cellule (qui aboutira à un type cellulaire ou un autre) soit déterminée par la position de cette cellule
dans la masse des autres cellules, ou par la façon dont elle a été générée par division cellulaire (quand
une cellule se divise en deux nouvelles cellules, ces deux cellules-filles n'auront pas forcément la même
destinée, selon la répartition des composés biochimiques qui sont partagés au moment de la division ; si
bien que la direction de l'axe de cette division cellulaire va contrôler la présence de certaines cellules
Merci de ne pas diffuser ce PDF. Reproduction réalisée avec l'autorisation du CFC.
d'un côté de la masse de cellules, et d'autres de l'autre côté).
La compréhension de plus en plus précise de ces mécanismes a permis de récapituler, en laboratoire
dans des boîtes de Pétri, la formation de structures complexes, hétérogènes (constituées de plusieurs
types cellulaires différents, et agencés de manière similaire à ce qu'on trouve dans un organe naturel).
En contrôlant finement les conditions de culture et de différenciation des cellules-souches, on finit par
obtenir de mini-organes (des mini-reins, mini-foies, mini-cerveaux, ...), qui ont une organisation
morphologique et un fonctionnement qui se rapprochent de ceux des organes naturels.
En quoi ces mini-organes sont une avancée de la science ? Quels sont leur utilité ?
Ces découvertes s'inscrivent dans une discipline très ancienne, qu'on appelle la « biologie du
développement », héritière de l'embryologie des siècles précédents. Le problème principal auquel
s'attaque la biologie du développement, c'est de comprendre comment, à partir d'une cellule unique
(l'ovule fécondé par un spermatozoïde), qui est un objet à symétrie essentiellement sphérique, les
phénomènes de division, de différenciation et de migration cellulaires aboutissent à un organisme
hétérogène et structuré, avec (c'est le cas de la plupart des espèces animales les plus courantes dans
notre environnement) un plan de symétrie entre la gauche et la droite. Sachant qu'à une échelle encore
plus fine, même cette symétrie planaire est perdue (le cœur est à gauche, le foie à droite, les intestins
se disposent d'une manière asymétrique, etc.).
Les mécanismes qui contrôlent la mise en place de ces structures, au cours du développement, sont
étudiés à différentes échelles (à l'échelle de l'embryon entier, avec des mouvements massifs et
coordonnés de structures entières dans l'embryon ; à l'échelle de la cellule, avec des divisions cellulaires
asymétriques, qui orientent les deux cellules-filles issues de la division dans des directions bien
précises ; à l'échelle de la molécule, avec des molécules diffusibles, émises à partir de certaines zones
bien précises de l'embryon, et dont la concentration locale déterminera la destinée des différentes
cellules : les cellules les plus proches de l'émission recevront plus de ce composé que les cellules les
plus éloignées). On s'aperçoit que les mécanismes responsables de la formation des organes dans un
embryon sont multiples, et le patient travail des biologistes du développement constitue la base
culturelle qui a été mise à profit pour produire ces fameux organoïdes, simplement en recréant
artificiellement les conditions de concentration en composés biochimiques et les contraintes mécaniques
qui aboutissent, in vivo, à l'apparition des organes.
L'une des utilités évidentes auxquelles on pense tout de suite, c'est la médecine régénérative. Quand un
patient souffre d'un organe défaillant et qu'il est impossible de le corriger par des médicaments, la
méthode actuelle consiste à greffer un nouvel organe, prélevé chez un donneur d'organe. Cette
méthode a de multiples inconvénients : d'une part, il faut trouver le donneur ; d'autre part, il faut que le
prélèvement de l'organe et son transport jusqu'au receveur préservent son intégrité et sa fonctionnalité ;
enfin, comme le greffon provient d'une personne différente, il sera reconnu comme un élément étranger
par le système immunitaire du receveur d'organe - il faut donc, pour que l'organe greffé ne soit pas
détruit par le système immunitaire du patient greffé, affaiblir considérablement le système immunitaire du
receveur. Ce qui a beaucoup d'effets secondaires, puisque le système immunitaire nous protège
habituellement contre les pathogènes ...
On peut donc rêver d'une méthode qui permettrait, à partir de cellules-souches prélevées chez le
receveur, de fabriquer un organe ex vivo, en laboratoire, et d'ensuite le greffer chez le patient. Si cet
organe est fabriqué à partir de ses propres cellules, il ne sera pas reconnu comme un élément étranger
par son système immunitaire ; et puisque la fabrication de l'organe est contrôlée en laboratoire, toute la
logistique du prélèvement et du transport du greffon sera simplifiée. Il faut bien préciser cependant qu'on
est encore loin de ce résultat : d'une part, les « organoïdes » obtenus à ce jour sont, comme leur nom le
signifie bien, des choses qui « ressemblent » à des organes naturels, mais qui s'en distinguent quand
même beaucoup (ne serait-ce que par leur taille : ce sont de petites structures, qui tiennent dans une
boîte de Pétri ; mais aussi par leur organisation interne : on ne parvient pas à récapituler précisément
tous les phénomènes qui contrôlent le développement naturel des organes, si bien que la structure des
organoïdes synthétiques ne reproduit pas fidèlement celle des organes naturels). D'autre part, seuls
quelques organes bien précis ont pu être copiés en « organoïdes », et on est loin de disposer du livre de
recettes qui permettrait, pour un organe quelconque, de savoir comment le fabriquer à partir de cellulessouches.
Merci de ne pas diffuser ce PDF. Reproduction réalisée avec l'autorisation du CFC.
Une application plus réaliste à court terme pour ces organoïdes, c'est leur utilisation pour tester des
traitements médicaux. On imagine volontiers qu'un mini-organe humain, malgré ses imperfections, se
comportera d'une manière assez similaire à un véritable organe humain quand on le soumettra à un
médicament : les organoïdes pourraient permettre de mesurer les effets de médicaments sur une
pathologie, de mesurer leurs éventuels effets secondaires, avant de prendre le risque de les administrer
à des volontaires.
Des organoïdes peuvent également être obtenus de cellules adultes différenciées. Expliquez-nous ce processus !
On l'a vu, toute la méthode repose sur la disponibilité de cellules-souches : c'est le matériau de départ
pour fabriquer ces organoïdes. L'un des obstacles à la production d'organoïdes, c'est donc l'extraction et
la purification de cellules-souches, et notamment à partir d'un patient humain si on veut produire un
organoïde humain. Il existe des cellules-souches facilement accessibles, notamment dans le cordon
ombilical ; mais chez un adulte, les cellules-souches sont très rares et peu accessibles.
En revanche, on s'est aperçu que des cellules adultes différenciées (donc a priori incapables de se
différencier en d'autres types cellulaires) peuvent être transformées en cellules dites « pluripotentes »,
qui ont la capacité de se différencier en une grande variété de types cellulaires. Peut-être pas
exactement tous les types cellulaires, mais au moins un très grand nombre. Là encore, il s'agit de
soumettre ces cellules, prélevées chez un donneur, à des conditions de culture particulières, pour
obtenir ces précieuses cellules pluripotentes. Cette découverte, qui facilite énormément la production de
cellules pluripotentes, a valu en 2012 le prix Nobel de médecine et de physiologie à deux de ses
contributeurs principaux, John Gurdon et Shinya Yamanaka.
Quelles sont les dérives dont il faudrait se méfier ?
L'application technologique de nouvelles découvertes suscite souvent des espoirs (parfois encore
inaccessibles pour longtemps), mais aussi des inquiétudes. Étant donné l'ampleur des mises au point
qui restent à faire avant de pouvoir véritablement produire des organes « prêts à greffer » en laboratoire,
il est difficile d'imaginer les dérives potentielles. Les questions éthiques qui me viennent à l'esprit
concernent surtout la définition du « soi » : on sait que certains greffés vivent finalement assez mal le fait
de porter, au quotidien, un organe qui leur apparaît étranger. Ce qui est vrai après une greffe
conventionnelle devrait l'être aussi après une greffe d'organe fabriqué en laboratoire. Même si c'est un
exercice intellectuel tout à fait gratuit pour le moment, on peut aussi s'amuser à faire de la sciencefiction, même de la psychologie-fiction, en se demandant quel serait le statut d'un morceau de cerveau
greffé, et comment l'identité du receveur en serait affectée ... sachant que, je le répète, on est encore
très loin de savoir créer un cerveau artificiellement, et de le connecter dans le système nerveux d'un
receveur.
De manière beaucoup plus terre-à-terre, il est également important de garder conscience que, comme
pour toutes les découvertes populaires (de celles qui font leur chemin jusqu'à la presse grand public),
les chercheurs impliqués dans ces travaux sont soumis à une grande pression, à laquelle ils ne sont pas
forcément préparés. Ils peuvent même être tentés, d'un point de vue égoïstement carriériste, de mentir
sur leurs résultats, d'embellir les conclusions, et de manipuler les analyses, pour attirer l'attention des
médias, des financeurs, et de leur hiérarchie. On a justement vu un exemple récemment, dans le
domaine des cellules pluripotentes : une chercheuse avait publié des résultats caviardés, censés décrire
une nouvelle technique, très simple, de production de cellules pluripotentes. L'intérêt frénétique de la
société pour ces questions, compréhensible au vu des applications thérapeutiques envisageables,
contraste clairement avec le désintérêt habituel des médias pour la chose scientifique - et on constate
que ce sont souvent les domaines scientifiques les plus à la mode qui sont les plus affectés par la fraude
scientifique. C'est peut-être ça, à moyen terme, la principale dérive dont il faudra se prémunir : il faudra
s'assurer de la sincérité des résultats publiés
Merci de ne pas diffuser ce PDF. Reproduction réalisée avec l'autorisation du CFC.
SpectraBiologie.fr
11 août 2015
Analyseur d’immuno-hématologie milieu de gamme
Après la gamme XN dédiée aux laboratoires à forte capacité, Sysmex a présenté au salon EuromedlabJIB de juin 2015 sa nouvelle série XN-L, toujours consacrée à l’immuno-hématologie, mais cette fois
adaptée aux structures de taille plus modeste. Les détecteurs ont été miniaturisés et la source d’énergie
pneumatique internalisée pour proposer également des automates plus compacts.
La série XN-L se décline en trois appareils : le XN-L 550 (passeur à chargement continu), le XN-L 450
(mode ouvert ou fermé) et le XN-L 350 (mode ouvert uniquement). Chacun reprend les mêmes
fonctionnalités que la gamme XN : numération et formule (avec les granulocytes immatures) et le
comptage 5 populations des échantillons leucopéniques. Via la cytométrie en flux, XN-L peut mener des
analyses plus poussées, comme le comptage des réticulocytes (RET-He pour la gestion de l’anémie),
des plaquettes (PLT-O), et l’analyse automatisée des liquides biologiques. Pour les laboratoires
confrontés à des variations du nombre d’échantillons à traiter, l’application optionnelle Speed-up offre
des cadences jusqu’à 70 prélèvements par heure. Loin des 900 échantillons-heure de la gamme XN,
donc, mais avec un coût plus accessible et une qualité analytique similaire.
Merci de ne pas diffuser ce PDF. Reproduction réalisée avec l'autorisation du CFC.
La-Croix.com
10 août 2015
Les étudiants seront mieux rémunérés lors des stages hospitaliers
Un décret du ministère de la santé prévoit de revaloriser les gardes des externes, ces étudiants
en médecine entre la 4e et la 6e année. D’ici à 2016, leur indemnisation sera multipliée par deux.
/lenets_tan – Fotolia Les internes vont bientôt bénéficier d’une indemnisation de garde plus élevée. Elle passera de 26 € brut à
39 € dès septembre, puis à 52 € début 2016.
Aujourd’hui, les étudiants en médecine ont parfois l’impression de travailler quasi gratuitement quand ils
sont en stage à l’hôpital. « On peut prendre l’exemple d’une garde de samedi. On commence à 8 h 30 et
on finit à la même heure le lendemain matin. Et pour 24 heures, on est rémunéré aujourd’hui 26 € brut,
soit 20 € net », explique Luigi Venara, responsable de la communication de l’Association nationale des
étudiants en médecine de France (Anemf).
Les carabins vont pouvoir mettre un peu de beurre dans leurs épinards. Un arrêté, publié samedi 8 août
par la ministre de la santé, Marisol Touraine, prévoit une revalorisation progressive des indemnités pour
les gardes de jour ou de nuit, un dimanche ou un jour férié. Cette mesure concerne les externes, les
étudiants en stage à l’hôpital entre leur 4e et 6e année de médecine.
AUGMENTATION PROGRESSIVE DE L’INDEMNISATION DE GARDE
À la différence des internes, les externes n’ont pas le droit de prescrire des médicaments. Mais au
quotidien, ils sont souvent un renfort très utile dans bon nombre de services. « Sous la responsabilité
d’un interne et d’un médecin, on fait par exemple des examens cliniques ou divers actes de soins,
comme des sutures ou des ponctions lombaires », explique Luigi Venara.
Aujourd’hui pour une garde, un externe est indemnisé à hauteur de 26 € brut. L’arrêté prévoit que cette
indemnisation passera à 39 € au 1er septembre puis à 52 € début septembre 2016. S’ils accueillent
favorablement ce coup de pouce financier, les étudiants aimeraient aussi que leurs stages à l’hôpital
soient un peu plus intéressants et formateurs. En 2013, une enquête de l’Anemf, menée auprès de plus
de 7 000 étudiants, avait mis en lumière l’insatisfaction de bon nombre d’entre eux.
LES ASTREINTES DES INTERNES BIENTÔT RÉMUNÉRÉES SYSTÉMATIQUEMENT
À la question « Avez-vous l’impression d’être exploité en stage  ? », 56,82 % avaient répondu par
l’affirmative. « De façon générale, les étudiants en médecine regrettent globalement un certain manque
de reconnaissance, à la fois de la part des chefs de service, qui leur confient souvent des tâches
ingrates à effectuer (rangement de papiers, négociation d’examens complémentaires…), que de la part
des membres des équipes soignantes », souligne l’enquête. « Les étudiants en médecine regrettent que
ces tâches effectuées, souvent très chronophages et servant à pallier le manque de personnel, le soient
au détriment de leur formation et pour une rémunération extrêmement faible », ajoute l’Anemf.
Samedi, le ministère a publié un autre texte qui prévoit une meilleure rémunération des astreintes des
internes. Quand ils sont d’astreinte, de 18 h 30 à 8 h 30, ces derniers ne sont pas à l’hôpital mais ils
doivent être joignables et mobilisables à tout moment. « Aujourd’hui, on est rémunéré uniquement
quand on nous appelle pour venir à l’hôpital. Avec cet arrêté, à partir du 1 er novembre, on touchera
20 € par astreinte, même si on ne se déplace pas », précise Trystan Bacon, président de l’intersyndicale
nationale des internes de médecine générale.
PIERRE BIENVAULT
Merci de ne pas diffuser ce PDF. Reproduction réalisée avec l'autorisation du CFC.
Téléchargement