fR3
M=1
3
1 2 −2
212
−2 2 1
.
v1= (1,−1,1), v2= (1,1,0), v3= (−1,1,2)
B= (v1, v2, v3)R3
fB
f
gR3R2(e1, e2, e3)
(f1, f2)
A=2−1 1
3 2 −3.
R3e0
1=e2+e3, e0
2=e1+e3, e0
3=e1+e2B g
R2f0
1=1
2(f1+f2), f0
2=1
2(f1−f2)C g
(e0
1, e0
2, e0
3) (f0
1, f0
2)
(e1, e2, e3, e4)R4fR4R3
f(x, y, z, t)=(X, Y, Z)
X=x−y+z+t, Y =x+ 2z−t, Z =x+y+ 3z−3t.
f
(f(e1), f(e2)) imfBR3
ker f2 (u1, u2) ker f
(e1, e2, u1, u2)R4f(e1, e2, u1, u2)
B
(e1, e2, e3)R3ε1= (1,1,1) ε2= (1,2,1)
ε1, ε2e1R3
fR3R3
f(ε1) = ε2, f(ε2) = ε2et f(e1) = e1+e2.
fR3
f(ε1, ε2, e1)
f:R3→R3
f(x, y, z)=(x+y, 2x−y+z, x +z).
fR3