iii
Contents of the dissertation
This dissertation consists in two independent parts : Frieze Patterns and Non-Associative
Algebras. The problems studied, and the methods used in each of these parts contain algebra,
combinatorics and representation theory.
Presented papers
The results presented in the dissertation are published in the following research papers. Other
references are cited by letters and listed at the end of the dissertation.
Part I : Frieze patterns
[1] S. Morier-Genoud, V. Ovsienko, S. Tabachnikov. 2-Frieze patterns and the cluster
structure of the space of polygons. Ann. Inst. Fourier 62 (2012), 937–987.
[2] S. Morier-Genoud. Arithmetics of 2-friezes. J. Algebraic Combin. 36 (2012), 515–
539.
[3] S. Morier-Genoud, V. Ovsienko, R. E. Schwartz, S. Tabachnikov, Linear difference
equations, frieze patterns and combinatorial Gale transform, Forum Math. Sigma 2
(2014), e22.
[4] S. Morier-Genoud, V. Ovsienko, S. Tabachnikov. SL2(Z)-tilings of the torus, Coxeter-
Conway friezes and Farey triangulations, 2014, Ens. Math., to appear.
Part II.1, II.2 : Non-associative algebras (generalized octonions, Hurwitz square identities)
[5] S. Morier-Genoud, V. Ovsienko, Well, Papa, can you multiply triplets ?, Math.
Intell. 31 (2009), 1–2.
[6] S. Morier-Genoud, V. Ovsienko, Simple graded commutative algebras, J. Algebra.
323 (2010), 1649–1664.
[7] S. Morier-Genoud, V. Ovsienko, A series of algebras generalizing the octonions and
Hurwitz-Radon identity, Comm. Math. Phys. 306 (2011), 83–118.
[8] A. Lenzhen, S. Morier-Genoud, V. Ovsienko, New solutions to the Hurwitz problem
on square identities, J. Pure Appl. Algebra 215 (2011), 2903–2911.
[9] S. Morier-Genoud, V. Ovsienko, Orthogonal designs and a cubic binary function,
IEEE Trans. Information Theory, 59 :3 (2013) 1583–1589.
[10] S. Morier-Genoud, V. Ovsienko, Extremal set theory, cubic forms on Fn
2and Hur-
witz square identities (avec V. Ovsienko), arXiv :1304.0949, submitted.
[11] M. Kreusch, S. Morier-Genoud, Classification of the algebras Op,q, 2014, Comm
Alg, to appear.