G pαp α N
Z(G)6={1}
2 + 3
3
n3ω1, . . . , ωnn ωn= 1
pZ
Sp=
n
X
i=1
ωp
i
T=
n1
X
i=1
1
1ωi
z7→ 1
1z
BC
zB1z+z2B1 + z+z2B
B
(zn)n0z0C
nN, zn+1 =zn+|zn|
2
zC|z|<1
lim
n+
n
Y
k=0 1 + z2k
(an) (un)
u0>0un+1 =1
un+an+ 1 nN
(un) (an)
α1/e
f∈ C1(R,R)
xR, f0(x) = αf(x+ 1)
α= 1/e
zC7→ zexp(z)C
f∈ C2(R+,R) limx+f(x) = aR
f00 f0(x)x+
f: [0 ; 1[ Rf
(a, b)R2a < b f ∈ C0([a;b],C)
f
Zb
a
f
=Zb
a|f|
(a, b)R2µR
+f∈ C2([a;b],R)
x[a;b],f0(x)µ f0
Zb
a
e2iπf(t)dt1
µπ
n+
In=Z1
0t
1 + t2n
dt
f: [0 ; 1] R
Z1
0
f(t) dt= 0
x]0 ; 1[
Zx
0
tf(t) dt= 0
f: [0 ; 1] R
Z1
0
f(t) dt= 0
m f M
Z1
0
f2(t) dt≤ −mM
n2
Pn=XnnX + 1
Pnxn
xnn+
(xn)
xn
a, b N\ {0,1}nN
an+bnn
PC[X]P(0) = 1
ε > 0,zC,|z|< ε P(z)<1
tRnN
R[X] (Xcos t+ sin t)n
X2+ 1
PR[X]RP
PC[X]
P(X2) = P(X)P(X+ 1)
PR[X]Rα P 0+αP
R
PC[X]
P(1) = 1, P (2) = 2, P 0(1) = 3, P 0(2) = 4, P 00(1) = 5 P00(2) = 6
C3
x2+y2+z2= 0
x4+y4+z4= 0
x5+y5+z5= 0
Ka1, a2, . . . , anK
n
X
i=1 Y
j6=i
Xaj
aiaj
A(X) = Qn
j=1 (Xaj)
n
X
i=1
1
A0(ai)
(a, b, c)R3x7→ sin(x+a), x 7→ sin(x+b)x7→ sin(x+c)
PR[X] (P(n))nN
E F1F2E
F1F2
Mn(R)
A, B ∈ Mn(R)
(AB BA)2= In
M=a b
c d∈ M2(R)
0dcba b +ca+d
n2
Mn=anbn
cndn
n2
bn+cnan+dn
A=
1··· ··· 1
0 1
0··· 0 1
∈ Mn(R)
kNAk
A1
(A1)kkN
A1, . . . , Ak∈ Mn(R)
A1+··· +Ak= In1ik, A2
i=Ai
1i6=jk, AiAj= On
A∈ Mn(R)X, Y Mn,1(R)
A+YtXGLn(R)1 + tXA1Y6= 0
Dn+1 =
C0
0C1
1··· Cn
n
C0
1C1
2··· Cn
n+1
C0
nC1
n+1 ··· Cn
2n
[n+1]
Ck
n=n
k=n!
k!(nk)!
Pn(X) = XnX+ 1 n2
Pnn z1, . . . , znC
1 + z11··· 1
1 1 + z2
1
1··· 1 1 + zn
A H Mn(R) rg H= 1
det(A+H) det(AH)det A2
(un)pNupn un0
(un)
n+n
X
k=1k
nn
(un)
n
X
k=1
uknun
un
(un)n1
nN
vn=un/SnSn=u1+··· +un
Pvn
(un)
un
n
Rn=
+
X
k=n+1
uk
un/Rnun/Rn1
RG
y1Ry2⇒ ∃xG, xy1=y2x
RG
RG
GR
y
xG, xy =yx
yZ(G)
GR
Card G= Card Z(G) + N
NR
RG
{y1, . . . , yn} R
Hi={xG|xy1=yix}
i∈ {1, . . . , n}y1RyixiG
xiy1=yixi
ϕ:H1Hi
ϕ(x) = xix
Card H1=. . . = Card Hn=m
G H1, . . . , Hn
Card G=mn =pα
p p |N
pCard G= Card Z(G) + N
p|Card Z(G)
Z(G)6=1Z(G)
Card Z(G)p
x=2 + 3
3
x23= 3
x332x2+ 6x22=3
3x2+ 22 = x3+ 6x32 = x3+ 6x3
3x2+ 2
x2
Q
k∈ {1, . . . , n}, ωk= e2i/n =ωkω= e2iπ/n
n p ωp6= 1
Sp=
n
X
k=1
ωkp =ωp1ωnp
1ωp= 0
n p
Sp=
n
X
k=1
ωkp =
n
X
k=1
1 = n
(ab)3=a3
3a2b+ 3ab2
b3
1 / 20 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !