Page | 1
LYCÉE JAWHARA SOUSSE
DEVOIR DE CONTRÔLE N°3
Épreuve : Sciences Physiques
Niveau : 3ème année Sciences
Expérimentales
Prof : Ben Salem
Mohamed
Coefficient : 4
Durée : 2 h
Date : 04 Mai 2022
CHIMIE (9 Points)
EXERCICE N°1 (4,5 Points)
Le pourcentage massique du carbone dans l’acide carboxylique (A) est 48‚65%.
1)
a) Montrer que la molécule d’acide carboxylique (A) renferme 3 atomes de carbone. (B ; 0,5)
b) Déduire la formule semi-développée et le nom de (A). (A2 ; 0,5)
2) Le composé (A) a été obtenu à partir d’un alcool (B1).
a) Donner une méthode expérimentale permettant d’obtenir Le composé (A). (A2 ; 0,25)
b) Préciser la classe de (B1) et donner son nom. (A2 ; 0,5)
3) On prépare un volume VA = 100 mL d’une solution de pH = 3 et de concentration CA = 0‚1 mol.L1 en dissolvant
une masse m de (A) dans l’eau.
a) Déterminer m et montrer que l’acide (A) est faible. (A2 ; 0,5)
b) Écrire l’équation de dissolution de (A) dans l’eau. (A2 ; 0,25)
4) On fait agir l’acide (A) sur un autre alcool (B2) pour obtenir un composé (E) de masse molaire M = 88 g.mol1.
a) Nommer cette réaction et donner ces caractères. (A2 ; 0,5)
b) Déterminer la formule brute du composé (E). (A2 ; 0,5)
c) Déduire la formule semi-développée ‚le nom et la classe de l’alcool (B2). (A2 ; 0,5)
d) Écrire l’équation de la réaction qui donne (E). Nommer (E). (A2 ; 0,5)
On donne : M(C) = 12 g.mol1 ; M (H) = 1 g.mol1 ; M(O) = 16 g.mol1
EXERCICE N°2 (4,5 Points)
On s’intéresse aux monoamines aliphatiques saturées, de même masse molaire M = 59 g.mol1.
1) Déterminer leur formule brute. (A2 ; 0,25)
2) Écrire les formules semi-développées possibles correspondant à cette formule, donner le nom et la classe de
chaque amine. (A2 ; 1)
3) L’une de ces amines réagit avec l’acide nitreux, sans que l’on observe quoi que ce soit visuellement.
a) Identifier cette amine. (A2 ; 0,25)
b) Écrire l’équation de la réaction. (A2 ; 0,5)
4) Parmi les amines restantes, il y en a une qui donne une couche huileuse jaune par réaction avec l’acide
nitreux.
a) Identifier cette amine. (A2 ; 0,25)
b) À quelle famille appartient ce produit huileux jaune, donner sa formule semi-développée. (A2 ; 0,5)
5) Soient A et B les amines restantes, elles réagissent avec l’acide nitreux, en donnant des produits A’ et B’.
a) Sachant que B’ est un alcool secondaire, identifier l’amine B et écrire l’équation de la réaction. (A2 ; 0,75)
b) Identifier l’amine A. (A2 ; 0,25)
6) On prépare une solution aqueuse de l’amine A, de concentration 0,1 mol.L1.
a) Un pH-mètre dont la sonde est plongée dans la solution indique pH = 11,8, vérifier que cette amine est
une base faible. (A2 ; 0,5)
b) Écrire l’équation d’ionisation de l’amine A dans l’eau. (A2 ; 0,25)
On donne : M(C) = 12 g.mol1 ; M (H) = 1 g.mol1 ; M(N) = 14 g.mol1 ; Ke = 1014
Page | 2
On donne : g
= 10 m.s2
PHYSIQUE (11 Points)
EXERCICE N°1 (5,5 Points)
Une bille M assimilable à un point matériel de masse m = 50 g est
abandonné sans vitesse initiale en un point A d’une piste ABCD.
La piste est constituée :
d’un tronçon rectiligne AB incliné d’un angle 𝛼 = 30° par
rapport à l’horizontal ; AB = 1,6 m ;
d’un tronçon rectiligne horizontal BC ;
d’un tronçon circulaire CD, de centre O, et de rayon r = 60 cm
et tel que OC est perpendiculaire à BC.
Les frottements s’exercent qu’entre B et C, et sont équivalents à une force 𝑓
parallèle au déplacement et
d’intensité constante ‖𝑓
= 0,4 N.
1) Calculer la vitesse de la bille en B et la durée du trajet AB. (A2 ; 1)
2)
a) Quelle est la nature du mouvement de la bille sur la piste BC. (A2 ; 1)
b) Quelle devrait être la longueur BC pour que M arrive en C avec une vitesse nulle ? (A2 ; 0,5)
3) La bille M part en C avec une vitesse nulle et aborde la portion CD. La position de M est repérée par l’angle
𝜃 = (OD,OE
̂) au point E.
a) Exprimer, en fonction de g
, r, et 𝜃, la vitesse de M en E. (A2 ; 1)
b) Donner, en fonction de m, g
, r, et 𝜃, l’intensité de la réaction R
de la piste sur M en E. (A2 ; 1)
c) Calculer l’angle 𝜃0 pour que M quitte la piste. En déduire la vitesse de M en ce point. (A2 ; 1)
EXERCICE N°2 (5,5 Points)
Une bille B1 est lancée vers le haut à t = 0 s d’un point O origine d’un repère (O‚i
,j
) avec une vitesse v
1 faisant
un angle 𝛼 = 30 ̊ avec l’horizontale et de valeur v
1 = 8 m.s1.
1) Établir les équations horaires de la bille dans le repère (O‚i
,j
). (A2 ; 1)
2) Montrer que l’équation de la trajectoire de B1 le repère (O‚i
,j
) est y =
0,104 x2 + 0,577 x (B ; 1)
3) Montrer que la date d’arrivée de B1 au point P qui se trouve sur l’axe Ox est tp = 0‚8 s. (A2 ; 1)
4) À l’instant tP et d’un point O’ qui se trouve sur l’axe (Ox) et tel que OO= D = 15 m on lance une bille B2 avec
une vitesse horizontale v
2 de valeurv
2 = 10 m.s1.
On choisit le même repère du temps (la date où on a lancé B1) et le même repère (O‚i
,j
).
a) Établir les lois horaires du mouvement de B2. (A2 ; 1)
b) Déterminer l’instant où les deux billes B1 et B2 auront la même abscisse. (B ; 0,5)
c) Montrer que les deux billes B1 et B2 ne se rencontre pas. (B ; 1)
Soit A un succès dans la vie. Alors A = x + y + z, où x = travailler, y = s’amuser, z = se taire.
Albert Einstein
Bon travail
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !