Telechargé par Belkacem Azzoug

112064756-Cameron-Gate-Valves

publicité
Operation and Maintenance Manual
Manually Actuated FLS-TC
Fire Resistant Gate Valves
with Heat Sensitive Backseating Feature
TC1354
All the information contained in this manual is the exclusive property of
Cooper Cameron Corporation, Cameron Division. Any reproduction or
use of the calculations, drawings, photographs, procedures or instructions, either expressed or implied, is forbidden without the written permission of Cameron or its authorized agent.
Initial Release A1
November 1998
Copyright © 1998 all rights reserved
By
Cooper Cameron Corporation
Cameron Division
TC1354
2
PREFACE
The procedures included in this book are to be performed in conjunction with the requirements and recommendations outlined in API Specifications. Any repairs to the equipment covered by this book should be
done by an authorized Cameron service representative. Cameron will
not be responsible for loss or expense resulting from any failure of
equipment or any damage to any property or death to any person resulting in whole or in part from repairs performed by other than authorized Cameron personnel. Such unauthorized repairs shall also serve to
terminate any contractual or other warranty, if any, on the equipment
and may also result in equipment no longer meeting applicable requirements.
File copies of this manual are maintained. Revisions and/or additions
will be made as deemed necessary by Cameron. The drawings in this
book are not drawn to scale, but the dimensions shown are accurate.
This book covers a Cameron gate valve, which is a product of Cooper
Cameron Corporation.
Cooper Cameron Corporation
Cameron Division
P.O. Box 1212
Houston, Texas 77251-1212
713-939-2211
http://www.coopercameron.com
TC1354
3
TC1354
4
Contents
I. General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
A. Description and Features . . . . . . . . . . . . . . . . . . . . . . . . 7
B. Operating Instructions . . . . . . . . . . . . . . . . . . . . . . . . . 8
C. Dimensional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
D. Assembly Drawings and Parts Lists . . . . . . . . . . . . . . . . . . . 14
II. Periodic Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A. Lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B. Body Cavity Lubrication . . . . . . . . . . . . . . . . . . . . . . . . 21
C. Thrust Bearing Lubrication . . . . . . . . . . . . . . . . . . . . . . . 22
III. Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
IV. Ordering Replacement Parts . . . . . . . . . . . . . . . . . . . . . . . . 23
V. Stem Shear Pin Replacement . . . . . . . . . . . . . . . . . . . . . . . . 24
VI. Backseat Seal Engagement . . . . . . . . . . . . . . . . . . . . . . . . . 25
VII. Backseat Seal Verification . . . . . . . . . . . . . . . . . . . . . . . . . 27
A. For Valves Rated 10,000 psi and Below . . . . . . . . . . . . . . . . 27
B. For Valves Rated 15,000 psi and Above . . . . . . . . . . . . . . . . 28
C. For Valves with Special “Buried” Check Valve Below Grease Fitting. 29
VIII. Backseat Seal Disengagement And Bearing Mount Adjustment. . . . . 30
IX. Bonnet Grease Fitting Replacement . . . . . . . . . . . . . . . . . . . . 33
A. For Valves Rated 10,000 psi and Below . . . . . . . . . . . . . . . . 33
B. For Valves Rated 15,000 psi and Above . . . . . . . . . . . . . . . . 33
X. Thrust Bearing Replacement And Fusible Ring Inspection . . . . . . . . 34
A. For Conventional Threaded Bearing Cap Designs . . . . . . . . . . . 34
B. For Designs with Bearing Cap Retained by Threaded Ring . . . . . . 36
TC1354
5
XI. Stem Seal Replacement With Pressure In The Valve . . . . . . . . . . . 39
A. Stem Seal Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B. Stem Seal Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
XII. Gate And Seat Replacement . . . . . . . . . . . . . . . . . . . . . . . . 41
A. Gate and Seat Removal . . . . . . . . . . . . . . . . . . . . . . . . . 41
B. Parts Cleaning and Inspection . . . . . . . . . . . . . . . . . . . . . 44
C. Gate and Seat Installation . . . . . . . . . . . . . . . . . . . . . . . 45
TC1354
6
I. GENERAL INFORMATION
A. Description and Features
The FLS-TC gate valve is a forged, full-bore, through-conduit valve available in standard double flange and special block body configurations. The
following are features of the FLS-TC gate valve:
1. Bi-directional design provides flow direction versatility and increased
service life.
2. Positive metal-to-metal sealing (gate-to-seat and seat-to-body).
3. Simple, reliable gate and seat design promotes ease of field service
and minimal spare parts inventory.
4. Two spring-loaded, pressure energized, non-elastomeric lip-seals between each seat and body assist in low pressure sealing. They also protect against intrusion of particle contaminants into the body cavity
and seal areas.
5. Stem seal design covers full range of pressures, temperatures, and fluids encountered in wellhead and manifold service.
6. Metal-to-metal bonnet seal, (pressure energized 10,000 psi WP and
above).
7. Stem can be backseated to allow stem seal replacement with the valve
under pressure.
8. Grease injection fitting located downstream of stem backseat for
safety. Fitting located in bonnet, eliminating body penetration.
9. Bearing cap grease fitting allows positive bearing lubrication.
10. An optional add-on torque multiplier is available to provide easier operation.
11. Bearing Cap incorporates a eutectic ring which, upon melting in a fire,
allows the stem to automatically move to the backseat sealing position against the bonnet.
a. Stem cross-sectional area is sized to provide adequate force from
valve pressure to backseat the stem, overcoming gate drag friction.
b. Springs within the bearing cap move the stem to the backseat position in the event there is minimal pressure in the valve.
TC1354
7
12. See the valve assembly bill of material for component part numbers
and description.
B. Operating Instructions
A gate valve should always be in either the full-open or full closed position. Leaving the gate partially open or throttling through the valve could
cause damage to the gate.
The valve is opened by turning the handwheel counterclockwise (to the
left) until it stops (when the top of the gate contacts the bonnet). Then
turn the handwheel back to the right ¼ turn to relieve any stress in the
stem. Initial torque required to open the valve is shown in Table I.
The valve is closed by turning the handwheel clockwise (to the right) until
it stops and then backing off (counterclockwise) ½ to ¾ turn. The number
of turns required to move the valve from full open to full closed is shown
in Table II.
Table I: Operating Torque Requirements - English Units
2000 - 3000 psi WP
Valve Bore Size
2-1/16”
2-9/16”
3-1/8”
4-1/8”
5-1/8”
6-1/8”
6-3/8”
7-1/16”
Expected Opeing Torque,
Lubricated Valve, (ft-lb)
15
20
25
30
45
70
80
110
Maximum Opening Torque,
Severe Service, (ft-lb)
30
40
60
80
130
210
235
310
5000 psi WP
Valve Bore Size
2-1/16”
2-9/16”
3-1/8”
4-1/8”
5-1/8”
6-1/8”
6-3/8”
7-1/16”
9”
Expected Opeing Torque,
Lubricated Valve, (ft-lb)
20
25
35
50
75
210
140
233
470
Maximum Opening Torque,
Severe Service, (ft-lb)
45
65
95
135
220
350
395
520
850
10,000 psi WP
Valve Bore Size
1-13/16”
2-1/16”
2-9/16”
3-1/16”
4-1/16”
5-1/8”
6-3/8”
Expected Opeing Torque,
Lubricated Valve, (ft-lb)
30
35
50
65
110
260
520
Maximum Opening Torque,
Severe Service, (ft-lb)
80
85
130
170
320
690
1040
15,000 psi WP
Valve Bore Size
1-13/16”
2-1/16”
2-9/16”
3-1/16”
4-1/16”
Expected Opeing Torque,
Lubricated Valve, (ft-lb)
50
60
100
125
275
Maximum Opening Torque,
Severe Service, (ft-lb)
125
155
265
335
690
TC1354
8
Table I: Operating Torque Requirements - Metric Units
2000 - 3000 psi WP
Valve Bore Size
2-1/16”
2-9/16”
3-1/8”
4-1/8”
5-1/8”
6-1/8”
6-3/8”
7-1/16”
Expected Opeing Torque,
Lubricated Valve, (N•m)
20
27
34
41
61
95
108
149
Maximum Opening Torque,
Severe Service, (N•m)
41
54
81
108
176
285
319
420
5000 psi WP
Valve Bore Size
2-1/16”
2-9/16”
3-1/8”
4-1/8”
5-1/8”
6-1/8”
6-3/8”
7-1/16”
9”
Expected Opeing Torque,
Lubricated Valve, (N•m)
27
34
47
68
102
285
190
316
637
Maximum Opening Torque,
Severe Service, (N•m)
61
88
129
183
298
475
536
705
1152
10,000 psi WP
Valve Bore Size
1-13/16”
2-1/16”
2-9/16”
3-1/16”
4-1/16”
5-1/8”
6-3/8”
Expected Opeing Torque,
Lubricated Valve, (N•m)
41
47
68
88
149
353
705
Maximum Opening Torque,
Severe Service, (N•m)
108
115
176
230
434
936
1410
15,000 psi WP
Valve Bore Size
1-13/16”
2-1/16”
2-9/16”
3-1/16”
4-1/16”
Expected Opeing Torque,
Lubricated Valve, (N•m)
68
81
136
169
373
Maximum Opening Torque,
Severe Service, (N•m)
169
210
359
454
936
TC1354
9
C. Dimensional Data
F
3.75" (95.25 mm)
E
C
D
A
B
End View
Side View
Figure 1
TC1354
10
SD016774
Table II: Dimensional Data - English Units
Nominal
Size
(in)
Working
Pressure
(psi)
A
B
C
D
E
F
(lb)
Number
of Turns
1-13/16
10,000
15,000
18.25
18.00
9.06
9.88
(19.12)
(19.12)
5.75
5.88
(21.38)
(21.38)
14.00
14.00
240
280
12-1/3
12-1/3
2-1/16
2000
3000
5000
10,000
15,000
11.62
14.62
14.62
20.50
19.00
6.12
6.75
7.00
9.38
9.88
(17.25)
(17.25)
19.38
(19.62)
(19.88)
5.25
5.62
5.62
5.88
6.12
(19.62)
(19.62)
21.62
(21.88)
(25.00)
10.00
14.00
14.00
18.50
18.50
100
185
185
270
300
12-1/3
12-1/3
12-1/3
12-1/3
12-1/3
2-9/16
2000
3000
5000
10,000
15,000
13.12
16.62
16.62
22.25
21.00
7.12
7.62
9.25
9.81
11.50
(18.81)
(18.81)
(21.81)
21.00
(23.18)
6.00
6.50
7.38
6.81
7.94
(21.12)
(21.12)
(24.00)
23.31
(25.50)
10.00
14.00
14.00
18.50
18.50
150
230
230
370
560
15-1/8
15-1/8
15-1/8
15-1/8
15-3/4
3-1/8
2000
3000
5000
14.12
17.12
18.62
7.75
7.50
7.50
(22.81)
(22.81)
(22.81)
7.12
7.38
7.38
(25.00)
(25.00)
(25.00)
14.00
14.00
18.50
210
280
340
18-1/8
18-1/8
18-1/8
3-1/16
10,000
15,000
24.38
23.56
10.25
13.56
(23.88)
(28.94)
8.06
9.25
(25.00)
(30.18)
24.00
24.00
530
890
18-1/8
22-7/8
4-1/8
2000
3000
5000
17.12
20.12
21.62
9.75
10.50
10.81
(27.88)
(27.88)
(27.88)
9.12
9.12
9.12
(30.12)
(30.12)
(30.12)
18.50
18.50
18.50
350
450
540
23-1/4
23-1/4
23-1/4
4-1/16
10,000
15,000
26.38
29.00
12.81
14.60
(29.68)
(44.81)
10.06
11.70
(31.00)
(46.75)
24.00
24.00
870
1555
23-1/4
29-1/4
5-1/8
3000
5000
10,000
24.12
28.62
29.00
21.00
21.75
23.50
(33.31)
34.25
35.62
11.38
11.38
13.12
(34.50)
36.50
37.00
24.00
24.00
24.00
975
1100
1310
27-1/2
27-1/2
29
6-1/8
2000
3000
5000
22.12
24.12
29.00
12.38
12.75
14.12
(34.75)
(34.75)
(34.75)
12.88
12.88
12.88
(36.00)
(36.00)
(36.00)
18.50
24.00
24.00
800
1000
1220
33-3/4
33-3/4
33-3/4
6-3/8
2000
3000
5000
10,000
22.12
24.12
29.00
35.00
13.19
14.12
14.50
17.40
(34.75)
(35.75)
35.75
39.00
12.90
12.90
12.90
14.70
(36.50)
(36.50)
37.50
41.00
18.50
24.00
24.00
35.00
890
1020
1230
2500
33-3/4
33-3/4
33-1/4
43-1/8
7-1/16
3000
5000
28.12
32.00
17.38
17.38
(49.12)
(49.12)
14.62
14.62
(60.00)
(60.00)
43.00
43.00
1875
1975
46-1/2
46-1/2
9
5000
41.00
23.12
(55.62)
19.95
(66.75)
43.00
4100
59-1/4
Dimensions (in)
( ) = Approximate Dimension
TC1354
11
Weight
Dimensional Data
F
3.75" (95.25 mm)
E
C
D
A
B
End View
Side View
Figure 1
TC1354
12
SD016774
Table II: Dimensional Data - Metric Units
Nominal
Size
(in)
Working
Pressure
(psi)
A
B
C
D
E
F
(kg)
Number
of Turns
1-13/16
10,000
15,000
463.55
457.20
230.12
250.95
(485.65)
(485.65)
146.05
149.35
(543.05)
(543.05)
355.60
355.60
108.86
127.00
12-1/3
12-1/3
2-1/16
2000
3000
5000
10,000
15,000
295.15
371.35
371.35
520.70
482.60
155.45
171.45
177.80
238.25
250.95
(438.15)
(438.15)
492.25
(498.35)
(504.95)
133.35
142.75
142.75
149.35
155.45
(498.35)
(498.35)
549.15
(555.75)
(635.00)
254.00
355.60
355.60
469.90
469.90
45.36
83.91
83.91
122.47
136.08
12-1/3
12-1/3
12-1/3
12-1/3
12-1/3
2-9/16
2000
3000
5000
10,000
15,000
333.25
422.15
422.15
565.15
533.40
180.85
193.55
234.95
249.17
292.10
(477.77)
(477.77)
(553.97)
533.40
(588.77)
152.40
165.10
187.45
172.97
201.68
(536.45)
(536.45)
(609.60)
592.07
(647.70)
254.00
355.60
355.60
469.90
469.90
68.04
104.33
104.33
167.83
254.01
15-1/8
15-1/8
15-1/8
15-1/8
15-3/4
3-1/8
2000
3000
5000
358.65
434.85
472.95
196.85
190.50
190.50
(579.37)
(579.37)
(579.37)
180.85
187.45
187.45
(635.00)
(635.00)
(635.00)
355.60
355.60
469.90
95.25
127.00
154.22
18-1/8
18-1/8
18-1/8
3-1/16
10,000
15,000
619.25
598.42
260.35
344.42
(606.55)
(735.08)
204.72
234.95
(635.00)
(766.57)
609.60
609.60
240.40
403.70
18-1/8
22-7/8
4-1/8
2000
3000
5000
434.85
511.05
549.15
247.65
266.70
274.57
(708.15)
(708.15)
(708.15)
231.65
231.65
231.65
(765.05)
(765.05)
(765.05)
469.90
469.90
469.90
158.75
204.12
244.94
23-1/4
23-1/4
23-1/4
4-1/16
10,000
15,000
670.05
736.60
325.37
370.84
(753.87)
(1138.17)
255.52
297.18
(787.40)
(1187.45)
609.60
609.60
394.63
705.33
23-1/4
29-1/4
5-1/8
3000
5000
10,000
612.65
726.95
736.60
533.40
552.45
596.90
(846.07)
869.95
904.75
289.05
289.05
333.25
(876.30)
927.10
939.80
609.60
609.60
609.60
422.25
498.95
594.21
27-1/2
27-1/2
29
6-1/8
2000
3000
5000
561.85
612.65
736.60
314.45
323.85
358.65
(882.65)
(882.65)
(882.65)
327.15
327.15
327.15
(914.40)
(914.40)
(914.40)
469.90
609.60
609.60
362.87
453.59
553.38
33-3/4
33-3/4
33-3/4
6-3/8
2000
3000
5000
10,000
561.85
612.65
736.60
889.00
335.03
358.65
368.30
441.96
(882.65)
(908.05)
908.05
990.60
327.66
327.66
327.66
373.38
(927.10)
(927.10)
952.50
1041.40
469.90
609.60
609.60
889.00
403.70
462.66
557.92
1133.98
33-3/4
33-3/4
33-3/4
43-1/8
7-1/16
3000
5000
714.25
812.80
441.45
441.45
(1247.65)
(1247.65)
371.35
371.35
(1524.00)
(1524.00)
1092.20
1092.20
850.49
895.84
46-1/2
46-1/2
9
5000
1041.40
587.25
(1412.75)
506.73
(1695.45)
1092.20
1859.73
59-1/4
Dimensions (mm)
( ) = Approximate Dimension
TC1354
13
Weight
D. Assembly Drawings and Parts Lists
34
1
2
8
3
9
5
4
6
10
7
11
12
13
14
21
15
22
16
17
23
18
2000 Thru 5000 psi WP 24
19
2000 Thru 5000 psi WP 25
20
(Shown 90° out of Position) 26
24
10,000 &
15,000 PSI WP
28
27
29
30
31
32
Figure 2
TC2FLS5K.DWG
TC1354
SD017018
14
Parts List: FLS-TC Manual Gate Valve, Figure 2
Item
Recommended
Spare Part
1
Stem Adapter
2
*
Pin (Shear)
3
*
O-Ring
4
Retainer Ring
5
*
O-Ring
6
*
Fusible Ring
7
Sleeve
8
Set Screw
9
Bearing Mount
10
Bearing Cap
11
*
12
13
Bearing Race
Grease Fitting
*
Bearing, Roller
14
Spring
15
Packing Gland
16
Support Ring
17
*
Back-Up Ring
18
*
Stem Seal
19
Stud
20
Nut
21
Stem
22
Bonnet
23
Check Valve (Optional)
24
TC1354
Description
*
Gasket
25
Pin (Bonnet)
26
Grease Fitting
27
Retainer Plate
28
Gate
29
Seat
30
Seal O.D.
31
Seal I.D.
32
Body
33
Nameplate
34
Handwheel
15
40
1
8
2
9
3
10
41
11
4
12
5
6
13
7
14
7
15
16
18
17
19
20
21
Optional 23
22
25
29
(Shown 90° out of Position) 24
30
27
31
33
32
26
28
37
34
35
36
38
Figure 3
TC56.DWG
TC1354
SD017017
16
Parts List: FLS-TC Manual Gate Valve, Figure 3
Item
Spare
Part
Stem Adapter
22
*
Pin (Shear)
23
Collar
24
*
Grease Fitting
Grease Fitting
25
*
Check Valve (Optional)
5
Bearing Cap
26
Stem
6
Bearing Mount
27
Bonnet
7
Spring
28
8
Retainer Ring
29
Stud
Item
Spare
Part
1
2
*
3
4
*
Description
Description
Stem Seal
Heat Shield (Optional)
*
Gate
9
*
O-Ring
30
Nut
10
*
Lip Seal
31
Hex Head Cap Screw
11
*
Ball Bearing
32
12
*
Fusible Ring
33
Pin (Bonnet)
13
*
Roller Bearing
34
Retainer Plate
14
Packing Gland
35
*
Seat
15
Pin (Dowel)
36
*
Seal O.D.
16
Spring Retainer
37
*
Seal I.D.
17
Bearing Cap Retainer
38
Body
18
Set Screw
39
Nameplate
19
*
20
21
TC1354
*
O-Ring
40
Support ring
41
Back-Up Ring
17
*
Gasket
Hand Wheel
*
Wear Ring
32
1
2
8
3
9
5
6
4
7
10
11
12
33
13
16
14
17
15
18
19
20
Shown 90° out of Position
21
24
34
23
22
25
26
27
28
29
30
Figure 4
TC29SRL.DWG
TC1354
SD017016
18
Parts List: FLS-TC Manual Gate Valve, Figure 4
Item
Recommended
Spare Part
1
Stem Adapter
2
*
Pin (Shear)
3
*
O-Ring
4
Retainer Ring
5
*
O-Ring
6
*
Fusible Ring
7
Sleeve
8
Set Screw
9
Bearing Mount
10
Bearing Cap
11
*
12
13
Bearing Race
Grease Fitting
*
Roller, Bearing
14
Spring
15
Packing Gland
16
Support Ring
17
*
Back-Up Ring
18
*
Packing
19
Stud
20
Nut
21
Stem
22
Bonnet
23
TC1354
Description
*
Gasket (SRL)
24
Grase Fitting
25
Retainer Plate
26
Gate
27
Seat
28
Seal O.D.
29
Seal I.D.
30
Body
31
Nameplate
32
Handwheel
33
Heat Shield
34
Cap Screw
19
II. PERIODIC MAINTENANCE
A. Lubricants
1. Recommended body cavity lubricant
a. For normal operation, use Cameron standard valve grease, which is
not affected by water or temperatures ranging from -20º to
+250ºF.
b. For continuous service below 0ºF, use one of the two available low
temperature greases.
c. For CO2 injection or very high CO2 production, use diesel-resistant
grease.
d. For continuous service above 180ºF, use one of the two available
high temperature greases.
e. Part numbers for ordering grease as well as selection guidelines are
given in Table III.
With High CO2
E
P
F
P
700149
700667
700668*
700669
700670
-50°F to 250°F
(-46°C to 121°C)
E
P
F
P
700123
700671
700672
700673
700674
-75°F to 350°F
(-59°C to 177°C)
E
P
F
P
711027 711027-1
711027-2 711027-3 711027-4
E
E
G
G
713837 713837-1
713837-2 713837-3 713837-4
-0°F to 450°F
(-18°C to 232°C)
G
P
F
P
700217
-20°F to 500°F
(-29°C to 260°C)
G
P
F
P
710194 710194-1
Diesel
-0°F to 350°F
(-18°C to 177°C)
High
Temperature
E - Excellent (Recommended)
G - Good (Recommended)
TC1354
F - Fair (Not Recommended)
P - Poor (Not Recommended)
20
5 lb Can
700679
700680
700681
400 lb Drum
With H2S
-20°F to 250°F
(-29°C to 121°C)
Resistant
Quantities (By Part Number)
Available on a Standard Order Basis
120 lb Drum
Diesel
Standard
Low
Temperature
Operational
Properties
25 lb Pail
Service
Temperature
(Per Pound)
Service
Standard Crude
Table III: Lubricant Selection
700682
710194-2 710194-3 710194-4
*Available in 20 lb pail only
2. Recommended thrust bearing lubricant
a. For normal operation, use Cameron standard valve lubricant, which
is not affected by water or temperatures ranging from -20º to
+250ºF.
b. For continuous service below 0ºF, use one of the two available low
temperature greases.
3. Recommended anti-seize compound where specified, use High
Nickel/High Temperature anti-seize compound, P/N 711227.
B. Body Cavity Lubrication
1. Normal Operating Conditions
Cameron lubricates gate valves on assembly. Lubricate the body cavity
after ten operating cycles.* If the valve is removed from service, lubricate the body cavity before returning it to the line.
a. Remove the grease fitting cap. Refer to Figures 5 and 6.
b. Using either a bucket type gun, P/N 19873-03, or hand-held type,
P/N 19873-01, connect the grease gun coupler to the grease fitting.
c. Pump the appropriate amount of lubricant into the body cavity.
Refer to Table IV.
* One cycle opening and closing the valve one time. The service interval can vary
according to application, fluids used, and well conditions. If pressure is equalized
across the valve before the valve is opened, the service interval can be extended.
2. Unusual Temporary Operating Conditions
If it becomes necessary to cement through, acidize through, or subject
the valve to any other unusual service:
a. Lubricate the valve body cavity before it is put into operation.
b. Flush the valve with appropriate neutralizing fluid after it is removed from service.
c. Operate the valve with fresh water or appropriate neutralizing
fluid in the line.
d. Lubricate the valve body cavity.
TC1354
21
Table IV: Grease Volume Requirements:
Valve Size
Lubricant Volume
Required
Lubricant Weight
Approximate Follower
Plate Travel
(cu in)
(Liter)
(lb)
(kg)
(in)
(mm)
1-13/16” 10,000 psi WP
38
0.6
1.5
0.7
0.6
15
1-13/16” 15,000 psi WP
38
0.6
1.5
0.7
0.6
15
2-1/16” 2000 psi WP
43
0.7
1.7
0.8
0.7
18
2-1/16” 3000 psi WP
43
0.7
1.7
0.8
0.7
18
2-1/16” 5000 psi WP
43
0.7
1.7
0.8
0.7
18
2-1/16” 10,000 psi WP
43
0.7
1.7
0.8
0.7
18
2-1/16” 15,000 psi WP
43
0.7
1.7
0.8
0.7
18
2-9/16” 2000 psi WP
79
1.3
3.2
1.5
1.3
33
2-9/16” 3000 psi WP
79
1.3
3.2
1.5
1.3
33
2-9/16” 5000 psi WP
79
1.3
3.2
1.5
1.3
33
2-9/16” 10,000 psi WP
79
1.3
3.2
1.5
1.3
33
2-9/16” 15,000 psi WP
93
1.5
3.7
1.7
1.6
41
3-1/8” 2000 psi WP
114
1.9
4.6
2.1
1.9
48
3-1/8” 3000 psi WP
114
1.9
4.6
2.1
1.9
48
3-1/8” 5000 psi WP
114
1.9
4.6
2.1
1.9
48
3-1/16” 10,000 psi WP
114
1.9
4.6
2.1
1.9
48
3-1/16” 15,000 psi WP
155
2.5
6.2
2.8
2.6
66
4-1/8” 2000 psi WP
245
4.0
9.8
4.4
4.1
104
4-1/8” 3000 psi WP
245
4.0
9.8
4.4
4.1
104
4-1/8” 5000 psi WP
245
4.0
9.8
4.4
4.1
104
4-1/16” 10,000 psi WP
245
4.0
9.8
4.4
4.1
104
4-1/16” 15,000 psi WP
275
4.5
11.0
5.0
4.6
117
5-1/8” 3000 psi WP
312
5.1
12.5
5.7
5.2
132
5-1/8” 5000 psi WP
312
5.1
12.5
5.7
5.2
132
5-1/8” 10,000 psi WP
461
7.5
18.4
8.3
7.7
196
6-1/8” 2000 psi WP
583
9.5
23.3
10.6
9.8
249
6-1/8” 3000 psi WP
583
9.5
23.3
10.6
9.8
249
6-1/8” 5000psi WP
583
9.5
23.3
10.6
9.8
249
6-3/8” 2000 psi WP
583
9.5
23.3
10.6
9.8
249
6-3/8” 3000 psi WP
583
9.5
23.3
10.6
9.8
249
6-3/8” 5000 psi WP
583
9.5
23.3
10.6
9.8
249
6-3/8” 10,000 psi WP
575
9.4
23.0
10.4
9.7
246
7-1/16” 3000 psi WP
1250
20.5
50.0
22.7
21.0
533
7-1/16” 5000 psi WP
1250
20.5
50.0
22.7
21.0
533
9” 5000 psi WP
1250
20.5
50.0
22.7
21.0
533
C. Thrust Bearing Lubrication
Lubricate the thrust bearings as often as required to ensure smooth valve
operation. Pump grease into the automotive type fitting located in the
bearing cap.
TC1354
22
III. TROUBLESHOOTING
Table V
Symptom
Possible Cause
Action
Fluid leaks past the gate and
seat assembly.
1. Gate or seats are worn.
2. Handwheel is not backed
off.
Replace the gate or seats.
Back off the handwheel ¼
turn.
Fluid leaks around the valve
stem.
Stem packing is worn.
Replace the stem packing.
Fluid leaks at the bonnet
flange.
1. Bonnet seal ring is
damaged.
2. Bonnet or body ring
groove is damaged.
Replace the bonnet seal ring.
Fluid leaks from the bonnet
grease fitting.
Check valve inside the grease
fitting is worn or contains
debris.
Replace the grease fitting.
Handwheel is hard to turn.
1. Thrust bearings have lost
lubricant.
2. Thrust bearings are
corroded.
3. Gate and stem threads
have lost lubricant.
Lubricate the thrust
bearings.
Replace the thrust bearings.
Stem shear pin is sheared.
Replace the stem shear pin.
Handwheel turns without
opening or closing the valve.
Return the valve to Cameron
for repair.
Lubricate the gate and stem
through the bonnet grease
fitting.
IV. ORDERING REPLACEMENT PARTS
The only information needed for ordering replacement parts for a Cameron
gate valve is the original valve assembly part number and the description of
the part. The valve assembly part number is stamped on the valve body nameplate. It is recommended that a description of the valve assembly (size, pressure, trim) be included as a check on the assembly number, but this is not
necessary if the assembly number is clearly readable.
It is not recommended to order replacement parts by using the part number
off the old part or by referring to a file copy of the valve assembly bill-ofmaterial. If an engineering change has been implemented to the valve assembly to replace one component part number with another, the only way to ensure getting the updated component is to reference the valve assembly
number and to reference the part by description (gate, seat, stem, etc). Part
descriptions are shown in the parts lists, Part ID Cameron personnel can then
check the latest revision of the assembly bill-of-material to obtain the appropriate and current replacement part number.
TC1354
23
V. STEM SHEAR PIN REPLACEMENT
A. Procedure for design with shear pin retained by set screws as shown in
Figure 2. Item numbers in parentheses refer to Figure 2.
The two shear pins (item 2) can be replaced with pressure in the valve,
with the gate in any position (open to closed), and without engaging the
stem backseat. The pin through the stem adapter (1) and stem (21) is subjected to operating torque only. The pin through the bearing mount (9)
and stem (21) locks the bearing mount position on the stem.
1. Remove the handwheel (34).
2. Remove the two set screws (8) from the stem adapter (1).
3. Remove the stem adapter-to-stem pin using a small hammer and
punch. If the pin has sheared, it probably will not come out - do not
try to force it. Pull the stem adapter (1) off the stem and remove
sheared pieces of the pin from both parts.
4. Remove the bearing mount-to-stem pin using a small hammer and
punch. Maintain the rotational position of the bearing mount (9) with
respect to the stem.
Caution: The two shear pins are made from a specific material, heat treated to a
closely controlled strength. Therefore, do not substitute different pins.
This could result in premature shearing of a pin during valve operation, or
damage to valve components. Use only replacement pins per the part
number on the Cameron bill of material for the specific valve being serviced.
5. Reinstall both pins if in good condition, or replace with new pins as
needed per the Cameron part number for the specific valve.
6. Replace the two stem adapter set screws (8).
7. Replace the handwheel (34).
B. Procedure for design with shear pins retained by a collar as shown in Figure 3. Item numbers in parentheses refer to Figure 3.
The two shear pins (item 2) can be replaced with pressure in the valve,
with the gate in any position (open to closed), and without engaging the
stem backseat. The pin through the stem adapter (1) and stem (26) is subjected to operating torque only. The pin through the bearing mount (6)
and stem (26) locks the bearing mount position on the stem.
1. Remove the handwheel (40).
TC1354
24
2. Remove the retainer ring (8).
3. Remove the collar (3), held only by friction of O-ring, lip seal, etc.
4 Remove the stem adapter-to-stem pin using a small hammer and
punch. If the pin has sheared, it probably will not come out - do not
try to force it. Pull the stem adapter (1) off the stem and remove
sheared pieces of the pin from both parts.
5. Remove the bearing mount-to-stem pin using a small hammer and
punch. Maintain the rotational position of the bearing mount (6) with
respect to the stem.
Caution: The two shear pins are made from a specific material, heat treated to a
closely controlled strength. Therefore, do not substitute different pins.
This could result in premature shearing of a pin during valve operation, or
damage to valve components. Use only replacement pins per the part
number on the Cameron bill of material for the specific valve being serviced.
6. Reinstall both pins if in good condition, or replace with new pins as
needed per the Cameron part number for the specific valve.
7. Clean and grease surfaces of the collar (3) that contact the bearing
cap lip seal (10) and the stem adapter O-ring (9). Replace the collar.
8. Replace the retainer ring (8).
9. Replace the handwheel (40).
VI. BACKSEAT SEAL ENGAGEMENT (Stem/Bonnet)
It may be desirable to backseat the valve due to stem seal leakage or to perform maintenance procedures that require backseating.
A. Procedure for Designs with Shear Pin Retained by Set Screws as Shown in
Figure 2. Item numbers in parentheses refer to Figure 2.
1. Remove the handwheel (34).
2. Remove the two set screws (8) from the stem adapter (1).
3. Remove the stem adapter-to-stem shear pin (2) using a small hammer
and punch.
4. Remove the stem adapter (1) from the stem (21).
5. Remove the bearing mount (9)-to-stem shear pin (2).
TC1354
25
6. Prevent stem rotation with a high strength rod through the stem
adapter shear pin hole in the stem. Then use the wrenching flats to
turn the bearing mount (9) clockwise (to the right) to move the stem
and gate (28) until the stem backseat shoulder firmly contacts the
bonnet.
B. Procedure for Designs with Shear Pins Retained by Collar as Shown in Figure 3. Item numbers in parentheses refer to Figure 3.
1. Remove the handwheel (40).
2. Remove the collar retainer ring (8).
3. Remove the collar (3).
4. Remove the bearing mount (9)-to-stem shear pin (2), but do not remove the stem adapter (1)-to-stem shear pin (2).
5. Prevent stem rotation with a wrench on the stem adapter (1). Then
use the wrenching flats to turn the bearing mount (9) clockwise (to
the right) to move the stem and gate (28) until the stem backseat
shoulder firmly contacts the bonnet.
C. Alternates: Using ‘Conventional’ Backseating Procedures.
The following ‘standard’, more familiar backseating procedures used for
most Cameron gate valve models may also be used. The previously described procedures, A or B, require considerably less effort (torque) to
backseat an FLS-TC valve.
1. Procedure for Conventional Threaded Bearing Cap Designs as Shown
in Figure 2. Item numbers in parentheses refer to Figure 2.
a. Close the valve fully.
b. Loosen the bearing cap (10) – turn counterclockwise (to the left)
four complete turns.
c. Turn the handwheel clockwise (in the closing direction) until the
gate firmly contacts the bottom of the body cavity and the stem
moves outward until the backseat shoulder contacts the bonnet.
d. ‘Bump’ the handwheel in the closing direction for firm backseat
contact.
TC1354
26
2. Procedure for Designs with Bearing Cap Retained by a Threaded
Retainer as Shown in Figure 3. Item numbers in parentheses refer to
Figure 3.
a. Close the valve fully.
b. Loosen the bearing cap retainer (17) – turn counterclockwise (to
the left) four complete turns.
c. Turn the handwheel clockwise (in the closing direction) until the
gate firmly contacts the bottom of the body cavity and the stem
moves outward until the backseat shoulder contacts the bonnet.
d. ‘Bump’ the handwheel in the closing direction for firm backseat
contact.
VII. BACKSEAT SEAL VERIFICATION
A. For Valves Rated 10,000 psi (69 Mpa) WP and Below
Refer to Figure 2 and Figure 5.
Note: As an option, the high pressure fitting (Refer to Section VII.B.) may be utilized
in a valve rated at 10,000
psi (69 Mpa) and below.
1. Remove the grease
fitting cap.
1/8" Diameter Pin
Bonnet
Pressure
In Bonnet
Grease Fitting Body
2. Unseat the ball in the
grease fitting check
valve by inserting a
.125” (3.1 mm) diameter by .75” (19
mm) long pin into
the run of the fitting.
Grease
Fitting
Cap
Pressure
Bleed By
SD-10268-99
Figure 5 - Low Pressure Grease Fitting
3. Replace the cap slowly until the check valve ball in the fitting is unseated, and the pressure trapped by the backseating process is vented.
4. If pressure escapes quickly and then stops, valve body pressure is being
held either by the backseat, or possibly by a “buried” check valve (23)
in the grease fitting flow port (located as shown in Figure 2 or perhaps deeper into the port, particularly for a clad valve).
TC1354
27
Note: Standard FLS-TC gate valves do not have a “buried” check valve in the
grease fitting flow port. However, an extra check valve may be present in a
‘special’ valve bonnet. Therefore it is important to review the bill of material
for the specific valve being serviced, and the assembly drawing referenced
on the bill, to determine if there is a buried check valve in the grease port.
a) Remove the grease fitting cap.
b) Remove the grease fitting from the bonnet.
c) Remove the .125” (3.1mm) diameter pin from the grease fitting.
5. Determine whether or not a “buried” check valve is installed in the
grease fitting flow port. If no buried check valve exists, the backseat
seal has been verified in previous step 4. If the bonnet grease port
contains a buried check valve, proceed to Paragraph C on page 29.
B. For Valves Rated 15,000 psi (103.5 Mpa) WP and Above
Refer to Figure 6.
Note: The standard high pressure grease fitting is a
special metal sealing fitting containing a check
valve. The bonnet port is
a special configuration
with a straight thread,
rather than a pipe thread,
which accepts only this fitting design. As an option,
the high pressure fitting
may be incorporated in a
valve rated at less than
15,000 psi. Do not use
PTFE tape or thread sealant on these fittings.
1. Remove the grease
fitting cap.
Grease
Fitting
Body
Bonnet
Grease
Fitting
Cap
Pressure
In Bonnet
Pressure
Bleed By
Grease Fitting Gland
Hex
SD-10267-99
Figure 6 - High Pressure Grease Fitting
2. Loosen the fitting approximately one turn (counterclockwise rotation)
to unseat the metal seal, releasing pressure trapped by the backseating process.
TC1354
28
3. If pressure escapes quickly and then stops, valve body pressure is being
held either by the backseat, or possibly by a “buried” check valve (23)
in the grease fitting flow port (located as shown in Figure 2, or perhaps deeper into the port, particularly for a clad valve).
Note: Standard FLS-TC gate valves do not have a “buried” check valve in the
grease fitting flow port. However, an extra check valve may be present in a
‘special’ valve bonnet. Therefore it is important to review the bill of material
for the specific valve being serviced, and the assembly drawing referenced
on the bill, to determine if there is a buried check valve in the grease port.
a) Remove the grease fitting cap.
b) Remove the grease fitting from the bonnet.
4. Determine whether or not a “buried” check valve is installed in the
grease fitting flow port. If no buried check valve exists, the backseat
seal has been verified in previous step 3. If the bonnet grease port
contains a buried check valve, proceed to Paragraph C below.
C. For Valves with Special “Buried” Check Valve Below Grease Fitting
If the bonnet grease port contains a buried check valve, then valve body
pressure must be vented through the buried check valve to determine if
the backseat seal is effective. Unseat the ball in the buried check valve using a special Cameron unseating tool. Refer to the valve bill of material
for the tool part number.
1. Using the unseating tool, unseat the buried check valve to vent pressure trapped by the backseating process.
2. If pressure escapes quickly and then stops, valve body pressure is being
held by the backseat. The backseat seal and the buried check valve
seal have been verified to be effective.
a) Replace the bonnet grease fitting (with cap removed).
b) Install the grease fitting cap.
3. If no pressure escapes, valve body pressure is being held by the backseat. However, the buried check valve is apparently defective (leaking).
a) Remove the buried check valve unseating tool and replace the buried check valve.
b) Replace the bonnet grease fitting (with cap removed).
c) Install the grease fitting cap.
TC1354
29
4. If pressure continues to escape, the backseat seal is ineffective.
a) Remove the buried check valve unseating tool.
b) Replace the bonnet grease fitting (with cap removed).
c) Install the grease fitting cap.
d) Repeat the Backseat Seal Engagement procedure per Section VI.
e) Repeat Step VII: Backseat Seal Verification.
VIII. BACKSEAT SEAL DISENGAGEMENT AND BEARING MOUNT ADJUSTMENT
A. Procedure for Designs with Shear Pin Retained by Set Screws as Shown in
Figure 2 (Reference Section VI.A.). Item numbers in parentheses refer to
Figure 2.
1. Prevent stem rotation with a high strength rod through the stem
adapter shear pin hole in the stem (21). Then use the wrenching flats
to turn the bearing mount (9) counterclockwise (to the left) one full
turn and continue until opposing shear pin holes (or slots) in the bearing mount align with the shear pin hole in the stem (should be less
than an additional ½ turn).
2. Reinstall the bearing mount-to-stem pin if in good condition, or replace with a new pin per the Cameron part number for the specific
valve.
3. Install the stem adapter (1) on the stem, aligning the shear pin holes
through both parts. Reinstall the stem adapter-to-stem shear pin if in
good condition, or replace with a new pin per the Cameron part number for the specific valve.
Caution: The two shear pins are made from a specific material, heat treated to a
closely controlled strength. Therefore, do not substitute different pins.
This could result in premature shearing of a pin during valve operation, or
damage to valve components. Use only replacement pins per the part
number on the Cameron bill of material for the specific valve being serviced.
4. Replace the two stem adapter set screws (8).
5. Replace the handwheel (34).
TC1354
30
B. Procedure for Designs with Shear Pins Retained by Collar as Shown in
Figure 3. (Reference Section VI.B.) Item numbers in parentheses refer to
Figure 3.
1. Prevent stem rotation with a wrench on the stem adapter (1). Then
use the wrenching flats to turn the bearing mount (9) counterclockwise (to the left) one full turn and continue until opposing shear pin
holes (or slots) in the bearing mount align with the shear pin hole in
the stem (should be less than an additional ½ turn).
2. Reinstall the bearing mount-to-stem pin if in good condition, or replace with a new pin per the Cameron part number for the specific
valve.
3. Install the stem adapter (1) on the stem, aligning the shear pin holes
through both parts. Reinstall the stem adapter-to-stem shear pin if in
good condition, or replace with a new pin per the Cameron part number for the specific valve.
Caution: The two shear pins are made from a specific material, heat treated to a
closely controlled strength. Therefore, do not substitute different pins.
This could result in premature shearing of a pin during valve operation, or
damage to valve components. Use only replacement pins per the part
number on the Cameron bill of material for the specific valve being serviced.
4. Clean and grease surfaces of the collar (3) that contact the bearing
cap lip seal (10) and the stem adapter o-ring (9). Install the collar over
the stem adapter and bearing mount.
5. Install the collar retainer ring (8) on the stem adapter.
6. Install the handwheel (40) on the stem adapter.
C. Alternates: Using ‘Conventional” Procedures to Disengage Backseat Without Affecting Bearing Mount Adjustment.
1. Procedure for Conventional Threaded Bearing Cap Designs as Shown
in Figure 2. Item numbers in parentheses refer to Figure 2.
a. Turn the handwheel counterclockwise (to the left) a partial turn to
move the gate slightly away from the bottom of the body cavity
(torque may be relatively high due to stem backseat shoulder contact with bonnet).
TC1354
31
b. Turn the bearing cap (10) clockwise (to the right), pushing the stem
off backseat, until the gate contacts the bottom of the body cavity
(indicated by a marked increase in torque).
c. Repeat steps a) and b) until the bearing cap is completely made up
on the bonnet and tighten to 200 ft.-lb. (271 N•m) Torque.
d. Verify that the gate was not locked against the bottom of the
body cavity when tightening the bearing cap. Turn the handwheel
counterclockwise (opening direction) to verify gate freedom of
movement (torque will be proportional to gate friction due to
pressure in valve). If necessary, loosen the bearing cap and repeat
steps a through d.
e. Place the valve in the fully closed or fully open position.
Caution: Verify that it is safe with respect to pressure, fluids, etc. in the Christmas
tree, flow lines, and other equipment before opening the valve.
2. Procedure for Designs with Bearing Cap Retained by a Threaded
Retainer as Shown in Figure 3. Item numbers in parentheses refer to
Figure 3.
a. Turn the handwheel counterclockwise (to the left) a partial turn to
move the gate slightly away from the bottom of the body cavity
(torque may be relatively high due to stem backseat shoulder contact with bonnet).
b. Turn the bearing cap retainer (17) clockwise (to the right), pushing
the stem off backseat, until the gate contacts the bottom of the
body cavity (indicated by a marked increase in torque).
c. Repeat steps a) and b) until the bearing cap retainer is completely
made up on the bonnet and tightened to 300 ft.-lb. (407 N•m)
Torque.
d. Verify that the gate was not locked against the bottom of the
body cavity when tightening the bearing cap retainer. Turn the
handwheel counterclockwise (opening direction) to verify gate
freedom of movement (torque will be proportional to gate friction
due to pressure in valve). If necessary, loosen the bearing cap retainer and repeat steps a through d.
e. Place the valve in the fully closed or fully open position.
Caution: Verify that it is safe with respect to the Christmas tree, flow lines, and
other equipment before opening the valve.
TC1354
32
IX. BONNET GREASE FITTING REPLACEMENT
A. For Valves Rated 10,000 psi (69 Mpa) WP and Below. Item numbers in parentheses refer to Figure 2.
Refer to Figure 5 - Low Pressure Grease Fitting.
Note: As an option, the high pressure fitting may be utilized in a valve rated at
10,000 psi (69 Mpa) and below. Refer to Section IX.B.
1. Engage backseat seal (stem/bonnet) per Section VI.
2. Verify that the backseat is sealing per Section VII.
3. Remove the low pressure grease fitting from the valve bonnet. It is a
tapered pipe thread connection.
4. Clean the threads in the bonnet port and on the new fitting as
needed.
5. Apply PTFE tape or other thread sealant to the grease fitting threads.
6. Remove the cap from the new grease fitting.
Caution: Applying torque to the cap during installation could damage the fitting.
7. Install the grease fitting.
8. Install and tighten the cap on the fitting.
9. Disengage backseat and adjust bearing mount per Section VIII.
B. For Valves Rated 15,000 psi (103.5 Mpa) WP and Above
Refer to Figure 6 - High Pressure Grease Fitting.
1. Engage backseat seal (stem/bonnet) per Section VI.
2. Verify that the backseat is sealing per Section VII.
3. Remove the high pressure grease fitting from the valve bonnet.
4. Remove the cap from the new grease fitting.
Caution: Installing the high pressure grease fitting with the cap in place prevents
the fitting from seating properly.
5. Install the new fitting in the bonnet, applying 80 to 100 ft-lb (108 to
136 N•m) torque.
6. Install and tighten the cap on the fitting.
TC1354
33
7. Disengage backseat and adjust bearing mount per Section VIII.
X. THRUST BEARING REPLACEMENT AND FUSIBLE RING INSPECTION
A. Procedure for Conventional Threaded Bearing Cap Designs as Shown in
Figure 2. Item numbers in parentheses refer to Figure 2.
1. Thrust Bearing Removal
a. Engage backseat seal (stem/bonnet) per Section VI.
Note: Backseat verification (Section VII) is not necessary for this thrust bearing replacement procedure since the stem seal (18) will be retained throughout
the procedure by the packing gland (15).
b. The stem adapter (1) should already be removed after the backseat
procedure in previous Step a.
c. Remove the bearing cap (10) from the bonnet (22). Turn counterclockwise (to the left) to disengage from the bonnet threads.
d. Remove the outer thrust bearing (13) and two races (11) from the
bearing mount (9), or from inside the bearing cap (10).
e. Verify that the retainer ring (4) for the fusible ring sleeve (7) is positioned within 1/16 in. (1.6 mm) from the top of the bearing cap
(10). This is an indication that the fusible ring (6) is intact inside the
bearing cap.
f. If the gap between the retainer ring (4) and the top of the bearing
cap exceeds 1/8 in. (3.2 mm), the fusible ring may be too thin after
having been compressed by pressure force when subjected to excessive heat.
1) Remove the retainer ring (4).
2) Place the bearing cap upright in a hydraulic press and press
down on the inner sleeve (7) until it becomes loose inside the
bearing cap.
3) Remove the fusible ring (6) from inside the bearing cap or from
the shoulder of the sleeve (7). A hammer and chisel may be required to cut the fusible ring for removal. It is a relatively soft
metal or plastic ring.
g. Remove the bearing mount (9) from the stem (21). Prevent stem
rotation with a rod through the stem adapter shear pin hole in the
stem (26). Then use the wrenching flats to turn the bearing mount
counterclockwise (to the left) to disengage from the stem threads.
TC1354
34
h. Remove the inner thrust bearing (13) and two races (11) from
above the springs (14) or from the bearing mount (9).
2. Thrust Bearing Installation
a. Clean all parts prior to assembly. Use the same grease for the
thrust bearings and for assembly purposes as the body filler grease
specified on the bill of material for the specific valve. Use High
Nickel/High Temperature Anti-seize compound wherever anti-seize
is specified.
b. Verify that the Belleville springs (14) adjacent to the packing gland
(15) are oriented in ’series’, as shown in Figure 2.
c. Apply grease to one roller bearing and two races. Place the bearing between two races and place over the end of the bearing
mount (9) that will be adjacent to the springs (14), positioned as
shown.
d. Apply anti-seize to the threads in the bearing mount (9) and to the
mating threads on the stem (21). Thread the bearing mount onto
the stem by hand (clockwise rotation) until the bearing race firmly
contacts the outer spring, aligning the end of the bearing mount
inside the inner diameter of the springs (14).
e. Apply grease to one roller bearing and two races. Place the bearing between two races and place over the shear pin end of the
bearing mount, positioned as shown.
f. If required, reassemble fusible ring components into the bearing
cap. Refer to previous Step 1.f).
1) Install a new fusible ring (6) inside the bearing cap.
2) Apply anti-seize to the inside and outside surfaces of the fusible
ring retainer sleeve (7) and install inside the bearing cap.
3) Install the sleeve retainer ring (4).
g. Apply anti-seize to the threads in the bearing cap (10) and the
mating threads on the bonnet (22).
h. Thread the bearing cap onto the bonnet (clockwise rotation) until
the inner sleeve (7) contacts the packing gland (15). Tighten to 200
ft.-lb.(271 N•m) torque.
TC1354
35
i. Adjust the stem backseat shoulder to its normal operating position.
1) Prevent stem rotation with a rod through the stem adapter
shear pin hole in the stem (21). Then use the wrenching flats to
turn the bearing mount clockwise (to the right) until the stem
backseat shoulder contacts the bonnet (indicated by the bearing
mount becoming tight on the stem).
2) Continue to prevent stem rotation. Use the wrenching flats to
turn the bearing mount counterclockwise (to the left) 1½ turns
and continue turning until opposing shear pin slots (or holes) in
the bearing mount align with the shear pin hole in the stem
(should be less than an additional ½ turn).
3) Reinstall the bearing mount-to-stem pin if in good condition, or
replace with a new pin per the Cameron part number for the
specific valve.
4) Install the stem adapter (1) on the stem, aligning the shear pin
holes through both parts. Reinstall the stem adapter-to-stem
shear pin if in good condition, or replace with a new pin per the
Cameron part number for the specific valve.
Caution: The two shear pins are made from a specific material, heat treated to a
closely controlled strength. Therefore, do not substitute different pins.
This could result in premature shearing of a pin during valve operation, or
damage to valve components. Use only replacement pins per the part
number on the Cameron bill of material for the specific valve being serviced.
5) Replace the two stem adapter set screws (8).
6) Replace the handwheel (34).
7) Lubricate the thrust bearings through the grease fitting in the
bearing cap per Sections II.A.2. and II.C. in this manual.
B. Procedure for Designs with Bearing Cap Retained by a Threaded Retainer
as Shown in Figure 3. Item numbers in parentheses refer to Figure 3.
1. Thrust Bearing Removal
a. Engage backseat seal (stem/bonnet) per Section VI.
Note: Backseat verification (Section VII) is not necessary for this thrust bearing replacement procedure since the stem seal (22) will be retained throughout
the procedure by the packing gland (14).
TC1354
36
b. The collar (3) should already be removed after the backseat procedure in previous Step a.
c. Remove the optional heat shield (23) if so equipped. Remove the
cap screws (31) which secure the two halves of the heat shield.
d. Verify that the bearing cap (5) is held firmly against the bonnet
(27) by the bearing cap retainer (17). Looseness may indicate that
the fusible ring (12) is too thin after having been compressed by
pressure force when subjected to excessive heat.
e. Remove the bearing cap retainer set screws (18).
f. Remove the bearing cap retainer (17) from the bonnet (27). Turn
counterclockwise (to the left) to disengage from the bonnet
threads.
g. Check the condition of the fusible ring (12). It may be inside the retainer ring (17) or on the shoulder of the bearing cap (5). The fusible ring may be reused if in good condition.
h. If necessary, replace the fusible ring (12). A hammer and chisel may
be required to cut the ring for removal. It is a relatively soft metal
or plastic.
i. Remove the roller thrust bearing (11) from the bearing mount (6).
j. Remove the bearing mount (6) from the stem (26). Prevent stem
rotation with a wrench on the stem adapter (1). Then use the
wrenching flats to turn the bearing mount (6) counterclockwise (to
the left) to disengage from the stem threads.
k. Remove the tapered roller bearing (13) from the top of the spring
retainer (16) or from the bearing mount (6).
2. Thrust Bearing Installation
a. Clean all parts prior to assembly. Use the same grease for the
thrust bearings and for assembly purposes as the body filler grease
specified on the bill of material for the specific valve. Use High
Nickel/High Temperature Anti-seize compound wherever anti-seize
is specified.
b. Verify that the Belleville springs (7) adjacent to the packing gland
(14) are oriented in ‘series’, as shown in Figure 3.
TC1354
37
c. Pack the tapered roller bearing (13) with grease and place over the
end of the bearing mount (6) that will be adjacent to the spring retainer (16).
d. Apply anti-seize to the threads in the bearing mount (6) and to the
mating threads on the stem (26). Thread the bearing mount onto
the stem by hand (clockwise rotation) until the tapered roller bearing firmly contacts the spring retainer (16).
e. Pack the roller bearing (11) with grease and place over the shear
pin end of the bearing mount, positioned as shown.
f. Install the bearing cap (5) over the bearings and bearing mount,
aligning the two bearing cap pins (15) with the matching holes in
the bonnet.
g. Install the fusible ring (12) on the bearing cap, located as shown.
h. Apply anti-seize to the threads in the bearing cap retainer (17) and
the mating threads on the bonnet (27).
i. Thread the bearing cap retainer onto the bonnet (clockwise rotation) until it contacts the fusible ring (12). Tighten to 300 ft.-lb.
(407 N•m) torque.
j. Install the four locking set screws (18) in the bearing cap retainer
ring (17) and tighten evenly against the bonnet.
k. Replace the two piece optional heat shield (23) if so equipped. Retain with four cap screws (31) threaded into the bonnet (27).
l. Adjust the stem backseat shoulder to its normal operating position.
1) Install the stem adapter (1) in the stem, aligning the shear pin
holes through both parts. Reinstall the stem adapter-to-stem
shear pin if in good condition, or replace with a new pin per the
Cameron part number for the specific valve.
2) Prevent stem rotation with a wrench on the stem adapter (1).
Then use the wrenching flats to turn the bearing mount clockwise (to the right) until the stem backseat shoulder contacts the
bonnet (indicated by the bearing mount becoming tight on the
stem).
TC1354
38
3) Continue to prevent stem rotation. Use the wrenching flats to
turn the bearing mount counterclockwise (to the left) ½ turn
and continue turning until opposing shear pin holes (or slots) in
the bearing mount align with the shear pin hole in the stem
(should be less than an additional ½ turn).
4) Reinstall the bearing mount to stem pin if in good condition, or
replace with a new pin per the Cameron part number for the
specific valve.
Caution: The two shear pins are made from a specific material, heat treated to a
closely controlled strength. Therefore, do not substitute different pins.
This could result in premature shearing of a pin during valve operation, or
damage to valve components. Use only replacement pins per the part
number on the Cameron bill of material for the specific valve being serviced.
5) Clean and grease the surfaces of the collar (3) that contact the
bearing cap lip seal (10) and the stem adapter o-ring (9). Replace
the collar.
6) Replace the retainer ring (8).
7) Replace the handwheel (40).
XI. STEM SEAL REPLACEMENT WITH PRESSURE IN VALVE
Note: Item numbers in parentheses refer to Figure 2.
A. Stem Seal Removal
1. Engage backseat seal (stem/bonnet) per Section VI.
2. Verify that the backseat is sealing per Section VII.
3. Remove the bearing mount and thrust bearings per Section X.
4. Remove the Belleville springs (14) from the packing gland (15).
5. Remove the packing gland (15). Turn counterclockwise until the
threads disengage the bonnet threads.
6. Remove the stem seal and back-up ring (if applicable).
a. Connect a grease gun to the bonnet grease fitting (26). Use the
same grease as the body filler grease specified on the valve bill of
material. Pump grease into the bonnet seal bore until the seal
moves far enough out of the packing bore that grease no longer
moves the seal, and begins to bypass around the seal OD.
TC1354
39
b. Continue seal removal using corkscrew tools, and other specialized
removal tools.
Caution: Be very careful not to scratch or otherwise damage the sealing surfaces of
the stem OD, bonnet seal bore (including lead-in chamfer), etc., during
seal removal, cleaning, and inspection.
c. Disconnect the grease gun from the grease fitting.
B. Stem Seal Installation
1. Carefully clean the grease from the bonnet seal bore so that a hydraulic lock will not prevent installation of the stem seal.
2. Inspect the sealing surfaces in the bonnet seal bore and stem OD to
ensure they are clean and do not have scratches, corrosion, or other
damage.
3. Apply a light coat of grease to:
a. The stem OD sealing area and adjacent chamfer.
b. The bonnet seal bore sealing area, lead-in chamfer, and threads.
c. ID and OD of the stem seal and the backup ring, if applicable.
d. The packing gland nose end and threads.
4. Install the stem seal over the stem and into the bonnet seal bore:
a. J packing or U packing: Install with rounded nose facing pressure
(facing bottom of bonnet seal bore).
b. SLS or Varipak seal: Install with open end facing pressure.
c. HT-20 seal: Contact Cameron Service Representative (special tools
and training required; not user replaceable).
5. Using the packing gland as a pushing tool, push the packing into the
bonnet seal bore. Push the seal until the packing gland threads can
engage the bonnet threads. Then turn the packing gland clockwise (to
the right) until it contacts the bonnet.
TC1354
40
6. If a back-up ring is used, remove the packing gland from the bonnet.
Turn counterclockwise (to the left) to remove. Apply a light coat of
grease to the stem OD. Install the back-up ring over the stem sealing
OD. Use the packing gland to push the back-up ring over the stem until the packing gland threads can engage the bonnet threads. Turn the
packing gland clockwise (to the right) until it contacts the bonnet,
then tighten to approximately 200 ft-lb (271 N•m) torque.
7. Install remaining components including the bearing mount, thrust
bearings, bearing cap, shear pins, stem adapter and handwheel per
Section X.
XII. GATE AND SEAT REPLACEMENT
Note: Item numbers in parentheses refer to Figure 2 unless otherwise specified.
A. Gate and Seat Removal
1. Vent all pressure from the valve.
a. If the valve is not installed, ensure that at least one body end connection is vented to the atmosphere. Operate the handwheel to
move the gate to approximately the half open position. This ensures that no pressure is trapped in the body cavity.
b. If the valve is installed in a Christmas tree or other application, isolate the valve from well pressure or other pressure source.
1) Close adjacent valves upstream and downstream of the valve to
be repaired. Ensure that the adjacent valves will remain closed
during repair procedures.
2) Operate the handwheel to place the gate in approximately the
half open position.
Caution: If the handwheel is excessively hard to turn, verify that the stem is not
backseated (contacting the bonnet). Perform the steps in Sections VI and
VIII (VII not necessary) to be certain of correct bearing mount adjustment.
3) Vent all pressure from the body cavity and flow bore using the
grease fitting venting procedure in Section VII. Leave the fitting
in the venting configuration during this gate and seat replacement procedure.
2. Fully open the valve (turn the stem adapter (1) counterclockwise).
3. Support the weight of the heavy bonnet assembly with an appropriate lifting device.
TC1354
41
4. Loosen and remove the bonnet nuts (20).
5. Turn the stem adapter (1) clockwise until the stem threads (21) disengage the gate neck threads (28).
6. Remove the bonnet assembly.
7. Remove the Bonnet Gasket
a. For Standard Flat or Ring Type Gasket Designs
Remove by hand, being careful not to scratch or otherwise damage
gasket sealing surfaces in the body or bonnet.
b. For Special SRL Straight Bore Sealing Gasket Designs
Note: Item numbers in parentheses refer to Figure 4.
It is recommended that a new SRL gasket (23) be installed any time
the bonnet has been removed. However, if necessary, the SRL gasket can normally be reused if it has not been scratched or otherwise damaged. An SRL gasket is most likely to be reused in
circumstances such as lack of a new gasket, lack of the special installation and removal tool kit.
If the SRL gasket is going to be reused, it should not be removed
from the body (or bonnet if it remained in the bonnet upon disassembly). Also, the O.D. sealing surface of the gasket that is exposed
beyond the body (or bonnet) face should be protected from damage by a thin wrap with duct tape or similar means.
Normally, the SRL gasket will remain in the valve body when the
bonnet is removed. In the event the gasket remains in the bonnet
upon disassembly, the installation and removal tool kit can be used
to remove the gasket from the bonnet. The following instructions
are for removal of the SRL gasket from the valve body.
Note: Item numbers in parentheses refer to Figure 7.
1) Attach the removal tool (1) to the SRL gasket ‘flange’ with cap
screws (5). Lubricate the threads with valve assembly grease to
prevent galling.
2) Install the all-thread rod (3) into the removal tool (1) to approximately one rod diameter depth. Lock in position with a hex nut
(4) as shown.
TC1354
42
3) Place the load plate (2) over the threaded rod (3), contacting at
least four bonnet studs, 90 degrees apart, that are installed to
full normal depth in the valve body (so that the plate will be
parallel to the body bonnet face).
4) Apply grease to all the all-thread rod threads that extend beyond the load plate. Apply grease to the hex nut threads and
bottom face. Tighten the nut clockwise against the load plate to
pull the SRL gasket out of the body.
5
2
1
3
4
SD-017330
Figure 7 - SRL Gasket Removal: Tighten Outer Nut (4) to Pull Gasket Out of Bore.
TC1354
43
Note: Item numbers in parentheses refer to figure 2.
Caution: For a valve oriented with the flow bore vertical, such as in Christmas tree
applications, do not remove the gate (28) until the upper seat (29) has
been secured in position by special tooling. The heavy seat is free to fall
when the gate is removed if not held in the seat pocket by special tooling.
Refer to the bill of material for the specific valve being serviced for part
numbers of seat installation/removal tooling (normally in the ‘Optional
Items’ category of the bill of material).
8. Pull the gate (28) from between the seats (29).
Caution: For T-slot type gates with separate gate neck, the gate neck is not mechanically fixed to the gate. A “T-head” on one end of the gate neck fits
into a “T” shaped slot in the top of the gate. This loose connection allows
free side to side movement of the gate neck with respect to the gate.
9. Remove the seats from the body. If necessary, pry the seats loose with
a large screwdriver engaging the seat OD groove.
10. Remove the retainer plate (27) from the bottom of the body cavity.
B. Parts Cleaning and Inspection
1. Clean the body cavity and body cavity parts. Be careful not to scratch
or otherwise damage sealing surfaces. Sealing surfaces are identified
in the following inspection instructions.
2. Inspect sealing surfaces for scratches, galling, corrosion, coating flaws,
or other damage.
3. Inspect flat faces in both seat pockets in the body (32).
4. Inspect bonnet seal ring surfaces of the body (32) and bonnet (22).
5. Inspect front and back faces of both seats (29).
6. Inspect sealing lips of the seat lip seals (30 and 31).
7. Inspect both sides of the gate (28), and internal gate neck threads.
8. Inspect stem threads that engage the gate neck threads.
9. Inspect the retainer plate (27) for distortion, build-up of solid materials, etc.
10. Replace any damaged parts.
TC1354
44
C. Gate and Seat Installation
1. Install the Bonnet Gasket
A. For Standard Flat or Ring Type Designs
Standard bonnet gaskets should be installed just prior to bonnet
installation as described later in this procedure.
B. For Special SRL Straight Bore Sealing Gasket Designs
Note: Item numbers in parentheses refer to Figure 8.
1) If the bonnet studs had been removed from the body, install the
bonnet studs in the body.
Apply anti-seize to the threads in the body and to the ‘short
thread end’ of each stud. Thread the short thread end of each
stud into the body until it ‘bottoms out’ with full thread engagement (engagement length equivalent to stud diameter).
2) Apply a light coating of valve assembly grease to the sealing surfaces on one end of the gasket, and to the sealing bore and
lead-in chamfer in the body.
3) Place the gasket in the body counterbore, resting on the lead-in
chamfer. Place the installation tool (1) over the gasket, contacting the gasket O.D. flange. Place the load plate (2) over the bonnet studs as shown, contacting the installation tool.
For valves mounted horizontally, such as in a Christmas tree, it
may be necessary to hold the SRL gasket in place by attaching
the removal tool (1) to the SRL gasket flange with cap screws (5).
4) Apply anti-seize to the stud and bonnet nut threads. Install four
bonnet nuts 90 degrees apart, hand tight, aligning the load
plate (2) parallel with the bonnet face of the body.
5) Tighten the four bonnet nuts evenly in a criss-cross sequence
(1,3,2,4), keeping the load plate parallel to the bonnet face, to
press the gasket into the body counterbore. Continue until all
four nuts are tight, indicating that the gasket flange has bottomed out in the body counterbore.
6) Remove the four bonnet nuts, load plate (2), and installation
tool (1).
TC1354
45
1
2
SD-017326
Figure 8 - SRL Gasket Installation: using 4 Studs, 90° Apart, tighten Nuts Evenly.
2. Apply a coat of grease to the retainer plate (27) and place it in the
bottom of the body cavity, oriented as shown in Figure 2.
3. Apply a very thin film of grease to the body seat pockets (22).
4. Apply a light coat of grease to the lip seals (30 and 31) and install in
the seat grooves.
5. Apply a very thin film of grease to the back face of the seat (29), (lip
seal side).
TC1354
46
Caution: A heavy coat of grease between the OD and ID lip seals (30 and 31) may
cause damage or prevent installation of the gate into the valve.
6. Install the seats with lip seals into the body seat pockets, oriented
with the lip seals contacting the body.
7. Pack the stem threads in the gate neck (28) with grease.
8. Apply a coating of grease to both faces and bottom lead-in chamfers
of the gate, and to the faces of both seats.
9. Align the gate’s bottom edge lead-in chamfers with the seats and
push the gate between the seats.
Caution: For T-slot type gates with separate gate neck, the gate neck is not mechanically fixed to the gate. This loose connection allows free side to side
movement of the gate neck with respect to the gate. Therefore, the gate
neck must be held in place until the gate is moved far enough into the
body that the seats retain the gate neck in the gate.
10. Apply a very light coating of grease to a new flat type or ring type
bonnet gasket (24) and place on the bonnet face of the body. For special SRL gasket, refer to step C.1.
11. Using appropriate lifting equipment, lift the relatively heavy bonnet
assembly and position adjacent to the bonnet face of the body. Orient
the bonnet grease fitting toward the front side of the body, 90 degrees away from the valve bore.
12. Apply a coating of grease to the stem threads.
13. Engage the stem threads into the gate neck threads, rotating the stem
counterclockwise (left hand thread). Thread the stem into the gate
neck while moving the bonnet toward the body (guiding the bonnet
stud holes over the studs) until the bonnet is in contact with the bonnet gasket, and the gate is pulled close to the bonnet.
14. Install the bonnet nuts and tighten in an even pattern. Refer to Table
VI for torque requirements.
TC1354
47
Table VI: Recommended Bonnet Nut Torque
The torque values shown in these tables are extracted from API 6A 17th Edition,
Appendix D. The values are for user convenience only. They were calculated for
two different bolt yield strengths: 105 KSI (i.e. B7) and 80KSI (i.e. B7M); and also
for different coatings used on the bolts: ¦ = 0.13 (zinc/cadium plated) and ¦ = .07
(fluoropolymer such as Xylan 1052). All values shown assume that both the threads
and nut face are well lubricated with thread dope or a suitable grease. Choose the
bolt torque based on bolt size, material yield strength, and coating.
TC1354
48
Table VI - English Units
Valve Size
Stud
Diameter
D
(in.)
Threads
per in.
N
1-13/16”10,000 psi WP
1.125
1-13/16”15,000 psi WP
1.250
2-1/16” 2000 psi WP
Studs with SY = 80 KSI
Bolt Stress = 40 KSI
Studs with Sy = 105 KSI
Bolt Stress = 52.5 KSI
Torque
¦ = 0.07
(ft-lb)
Torque
¦ = 0.13
(ft-lb)
Torque
¦ = 0.07
(ft-lb)
Torque
¦ = .013
(ft-lb)
8
305
523
401
686
8
421
726
553
953
0.625
11
52
88
68
115
2-1/16” 3000 psi WP
0.875
9
143
243
188
319
2-1/16” 5000 psi WP
0.875
9
143
243
188
319
2-1/16” 10,000 psi WP
1.125
8
305
523
401
686
2-1/16” 15,000 psi WP
1.250
8
421
726
553
953
2-9/16” 2000 psi WP
0.750
10
90
153
118
200
2-9/16” 3000 psi WP
1.000
8
213
361
279
474
474
2-9/16” 5000 psi WP
1.000
8
213
361
279
2-9/16”10,000 psi WP
1.250
8
421
726
553
953
2-9/16” 15,000 psi WP
1.500
8
733
1278
962
1677
3-1/8” 2000 psi WP
0.750
10
90
153
118
200
3-1/8” 3000 psi WP
0.875
9
143
243
188
319
3-1/8” 5000 psi WP
1.125
8
305
523
401
686
3-1/16” 10,000 psi WP
1.250
8
421
726
553
953
3-1/16” 15,000 psi WP
1.500
8
733
1278
962
1677
4-1/8” 2000 psi WP
0.875
9
143
243
188
319
4-1/8” 3000 psi WP
1.125
8
305
523
401
686
4-1/8” 5000 psi WP
1.250
8
421
726
553
953
4-1/16” 10,000 psi WP
1.625
8
934
1635
1226
2146
4-1/16” 15,000 psi WP
1.875
8
1440
2539
1890
3332
5-1/8” 3000 psi WP
1.125
8
305
523
401
686
5-1/8” 5000 psi WP
1.375
8
563
976
739
1281
5-1/8” 10 000 psi WP
1.375
8
563
976
739
1281
6-1/8” 2000 psi WP
1.000
8
213
361
279
474
6-1/8” 3000 psi WP
1.125
8
305
523
401
686
6-1/8” 5000 psi WP
1.375
8
563
976
739
1281
6-3/8” 2000 psi WP
1.000
8
213
361
279
474
6-3/8” 3000 psi WP
1.125
8
305
523
401
686
6-3/8” 5000 psi WP
1.375
8
563
976
739
1281
6-3/8” 10,000 psi WP
1.750
8
1169
2054
1534
2696
7-1/16” 3000 psi WP
1.500
8
733
1278
962
1677
7-1/16” 5000 psi WP
1.500
8
733
1278
962
1677
9” 5000 psi WP
1.500
8
733
1278
962
1677
TC1354
49
Table VI - Metric Units
Valve Size
Stud
Diameter
Threads
per in.
N
Studs with SY = 550 Mpa
Bolt Stress = 275 Mpa
Studs with Sy = 720 Mpa
Bolt Stress = 360 Mpa
Torque
¦ = 0.07
(N • m)
Torque
¦ = 0.13
(N • m)
Torque
¦ = 0.07
(N • m)
8
413
706
540
925
8
569
981
745
1285
15.88
11
70
118
92
155
0.875
22.23
9
193
328
253
429
0.875
22.23
9
193
328
253
429
2-1/16” 10,000 psi WP
1.125
28.58
8
413
706
540
925
2-1/16” 15,000 psi WP
1.250
31.75
8
569
981
745
1285
2-9/16” 2000 psi WP
0.750
19.05
10
122
206
160
270
2-9/16” 3000 psi WP
1.000
25.40
8
288
488
376
639
D
(In.)
(mm)
1-13/16”10,000 psi WP
1.125
28.58
1-13/16”15,000 psi WP
1.250
31.75
2-1/16” 2000 psi WP
0.625
2-1/16” 3000 psi WP
2-1/16” 5000 psi WP
Torque
¦ = .013
(N • m)
2-9/16” 5000 psi WP
1.000
25.40
8
288
488
376
639
2-9/16” 10,000 psi WP
1.250
31.75
8
569
981
745
1285
2-9/16” 15,000 psi WP
1.500
38.10
8
991
1727
1297
2261
3-1/8” 2000 psi WP
0.750
19.05
10
122
206
160
270
3-1/8” 3000 psi WP
0.875
22.23
9
193
328
253
429
3-1/8” 5000 psi WP
1.125
28.58
8
413
706
540
925
3-1/16” 10,000 psi WP
1.250
31.75
8
569
981
745
1285
3-1/16” 15,000 psi WP
1.500
38.10
8
991
1727
1297
2261
4-1/8” 2000 psi WP
0.875
22.23
9
193
328
253
429
4-1/8” 3000 psi WP
1.125
28.58
8
413
706
540
925
4-1/8” 5000 psi WP
1.250
31.75
8
569
981
745
1285
4-1/16” 10,000 psi WP
1.625
41.28
8
1263
2211
1653
2894
4-1/16” 15,000 psi WP
1.875
47.63
8
1947
3433
2549
4493
5-1/8” 3000 psi WP
1.125
28.58
8
413
706
540
925
5-1/8” 5000 psi WP
1.375
34.93
8
761
1320
996
1727
5-1/8” 10,000 psi WP
1.375
34.93
8
761
1320
996
1727
6-1/8” 2000 psi WP
1.000
25.40
8
288
488
376
639
6-1/8” 3000 psi WP
1.125
28.58
8
413
706
540
925
6-1/8” 5000 psi WP
1.375
34.93
8
761
1320
996
1727
6-3/8” 2000 psi WP
1.000
25.40
8
288
488
376
639
6-3/8” 3000 psi WP
1.125
28.58
8
413
706
540
925
6-3/8” 5000 psi WP
1.375
34.93
8
761
1320
996
1727
6-3/8” 10,000 psi WP
1.750
44.45
8
1581
2777
2069
3636
7-1/16” 3000 psi WP
1.500
38.10
8
991
1727
1297
2261
7-1/16” 5000 psi WP
1.500
38.10
8
991
1727
1297
2261
9” 5000 psi WP
1.500
38.10
8
991
1727
1297
2261
TC1354
50
P.O. Box 1212
Houston, TX 77251-1212
Ph: 713-939-2211
Fax: 713-939-2611
http://www.coopercameron.com
© Cooper Cameron Corporation, Cameron Division, Printed in USA 11/98 TC1354
Téléchargement