Telechargé par Flo Alephi

Cours fractions 5ème

publicité
Utiliser les nombres rationnels
Définition et comparaison
I. Définitions
Quotient de deux nombres décimaux :
On veut écrire le résultat de la division de 13 par 7.
Effectue-la :
13
7
Que remarques-tu ? ........................................................................
Le quotient de 13 par 7 n’est pas un nombre décimal, c’est un nombre que l’on note :
13
7 .
Définition :
Le quotient de deux nombres 𝑎 et 𝑏 est le nombre par lequel il faut multiplier 𝑏 pour
obtenir 𝑎.
𝑎
On le note 𝑏.
𝑎
𝑏× =𝑎
𝑏
1) Fractions et nombres en écriture fractionnaire
Définition :
𝑎
L’écriture d’un quotient 𝑎 ÷ 𝑏 sous la forme 𝑏 est appelée écriture fractionnaire du nombre.
Le nombre situé au-dessus du trait de fraction est le numérateur.
Le nombre situé en dessous du trait de fraction est le dénominateur.
Définition
𝑎
Si le numérateur et le dénominateur sont des nombres entiers, 𝑏 est une fraction.
2) Nombres rationnels
Définition :
Tous les nombres qui peuvent s’écrire sous la forme d’une fraction sont appelés nombres
rationnels.
Remarque :
Les nombres entiers et les nombres décimaux sont des nombres rationnels également
2 20
415
2= =
4,15 =
1 10
100
II. Fractions égales
1) Règle à connaitre
Propriété
On ne change pas la valeur d'une fraction en multipliant ou en divisant le numérateur et le
dénominateur par le même nombre.
a ak
Si 𝑏 et 𝑘 sont non nuls, alors =
.
b bk
Exemples :
3 3 × 7 21
24 24 ÷ 2 12
=
=
=
=
4 4 × 7 28
18 18 ÷ 2
9
2) Simplifier une fraction
Définition :
Simplifier une fraction c’est chercher une fraction qui lui est égale mais qui a des
numérateurs et dénominateurs plus petits (plus simples).
Pour cela on divise, le numérateur et le dénominateur par un même nombre bien choisi.
Exemples :
26 26 ÷ 2 13
=
=
14 14 ÷ 2
7
33 33 ÷ 3 11
=
=
27 27 ÷ 3
9
45 45 ÷ 5 9
=
=
25 25 ÷ 5 5
3) Mettre deux fractions au même dénominateur
Méthode :
Pour mettre deux fractions au même dénominateur, il faut regarder les deux dénominateurs
et chercher un nombre qui est dans la table des deux dénominateurs (on dira un multiple
commun aux deux dénominateurs).
Ensuite on multiplie les numérateurs et dénominateurs de chaque fraction par le bon
nombre pour obtenir le dénominateur commun choisi.
Exemple :
7
6
On considère les fractions 3 et 5.
On doit donc trouver un multiple (nombre qui est dans la table) de 3 et de 5. C’est
donc 15 qu’on choisit.
Alors :
7 7 × 5 35
=
=
3 3 × 5 15
𝑒𝑡
6 6 × 3 18
=
=
5 5 × 3 15
III. Comparer des fractions
Propriété :
Pour comparer deux fractions, il faut qu’elles aient le même dénominateur. Alors la plus
grande est celle qui a le plus grand numérateur.
Toutefois, si les fractions ont le même numérateur, alors à plus grande est celle qui a le plus
petit dénominateur.
Enfin on peu aussi comparer les deux fractions à 1.
En effet, si le numérateur d’une fraction est supérieur à son dénominateur, alors elle est
supérieure à 1. Sinon elle est inférieure à 1.
Exemples :
Comparer
On met
4
7
𝟒
𝟕
𝟗
𝒆𝒕
∶
𝟏𝟒
4
8
sur 14 ∶ 7 = 14
8 < 9 donc
8
9
14
𝟓
4
9
< 14 donc 7 < 14
𝟕
Comparer 𝟏𝟐 et 𝟏𝟖 :
On cherche un multiple commun à
12 et 18 : c’est 36.
On met les deux fractions sur 36 :
5
15
7
14
= 36 et 18 = 36.
12
15 > 14 donc
15
36
>
14
36
5
𝟕
𝟕
𝟏𝟒
𝟑𝟐
Comparer 𝟏𝟏 et 𝟏𝟑 :
Les deux fractions ont le même
numérateur :
7
7
11 < 13 donc 11 > 13.
7
donc 12 > 18.
Comparer 𝟏𝟕 et 𝟐𝟗 :
On remarque que 14 < 17 donc
14
17
<1
32
et 32 > 29 donc 29 > 1
14
32
Donc 17 < 29.
Téléchargement
Explore flashcards