


Electrocinétique
EC3 : circuit RLC série
L’essentiel
EC3 : circuit RLC série
L’essentiel
Circuit RLC série soumis à une tension : équation différentielle
LC
d2 u
du
+ RC
+u=e
2
dt
dt
Circuit RLC en régime libre ou propre : équation différentielle
LC
d2 u
du
+ RC
+u=0
2
dt
dt
Polynôme caractéristique et variables réduites
Résoudre cette équation différentielle revient à trouver les solutions du polynôme caractéristique associé :
R
1
r2 + r +
=0
L
LC
On peut exprimer ce polynôme en fonction de variables dites réduites :
r2 + 2⁄r + Ê02 = 0
ou
r2 + 2–Ê0 r + Ê02 = 0
Les variables réduites sont :
– Ê0 est la pulsation propre des oscillations en l’absence des frottements, elle s’exprime en
1
rad.s≠1 : Ê0 = Ô
LC
– ⁄ est le facteur d’amortissement, exprimé en s≠1 : ⁄ =
R
2L
⁄
R
– – est le coefficient d’amortissement, sans dimension : – =
=
Ê0
2
Û
C
L
Facteur de qualité
Pour caractériser le circuit RLC série, on utilise souvent le facteur de qualité Q :
Q=
1
LÊ0
1
=
=
2–
R
RCÊ0
Existence de différents régimes
Les solutions du polynôme caractéristique dépendent de la valeur de son discriminant.
Le discriminant pouvant être soit positif, soit négatif, soit nul, le polynôme admet trois types
de solutions, l’équation différentielle associée au polynôme également.
Ces trois types de solutions définissent trois régimes de fonctionnement pour le circuit RLC
série libre.


Electrocinétique

EC3 : circuit RLC série
L’essentiel
On utilisera ici le discriminant réduit du polynôme qui a pour expression :
Õ
Régime apériodique :
Si
Õ
Õ
= ⁄2 ≠ Ê02
ou
Õ
= Ê02 (–2 ≠ 1)
>0
Relation entre les variables réduites
Ú
L
1
> 0 alors ⁄ > Ê0 , – > 1 ≈∆ R > 2
≈∆ Q <
C
2
Racines du polynôme caractéristique
Ò

⁄2 ≠ Ê02 = ≠–Ê0 ≠ Ê0 –2 ≠ 1
r1 = ≠⁄ ≠
Ò

⁄2 ≠ Ê02 = ≠–Ê0 + Ê0 –2 ≠ 1
r2 = ≠⁄ +
Solution générale de l’équation différentielle
u(t) = A1 er1 t + A2 er2 t
Et lorsque les constantes sont déterminées :
u(t) =
r2 E r 1 t
r1 E r 2 t
e ≠
e
r2 ≠ r 1
r 2 ≠ r1
Allure de la tension
En régime apériodique, il n’y a pas d’oscillations électriques.



Régime critique :
Si
Õ
Õ

=0
Relation entre les variables réduites
Ú
L
1
= 0 alors ⁄ = Ê0 , – = 1 ≈∆ R = 2
= RC ≈∆ Q =
C
2
Racines du polynôme caractéristique
Le polynôme admet une racine double négative, on a :
r1 = ≠⁄ = ≠Ê0
Solution générale de l’équation différentielle
u(t) = (A1 t + A2 )e≠⁄t


Electrocinétique

EC3 : circuit RLC série
L’essentiel
Et lorsque les constantes sont déterminées :
u(t) = E(⁄t + 1)e≠⁄t
Allure de la tension
Elle est la même que celle du régime apériodique puisque le régime critique est le premier
régime apériodique (retour à l’équilibre le plus rapide).
Régime pseudo-périodique :
Si
Õ
Õ
<0
Relation entre les variables réduites
Ú
L
1
< 0 alors ⁄ < Ê0 , – < 1 ≈∆ R < 2
≈∆ Q >
C
2
Racines du polynôme caractéristique
Le polynôme admet deux racines complexes conjuguées. Si on pose Ê 2 = ≠
r1 = ≠⁄ ≠ jÊ
Õ,
on a :
r2 = ≠⁄ + jÊ
Le j est la notation complexe utilisée en physique pour ne pas confondre le nombre complexe
classique avec l’intensité du courant.
Solution générale de l’équation différentielle
u(t) = (A1 cos(Êt) + A2 sin(Êt))e≠⁄t
ou :
u(t) = A cos(Êt + „)e≠⁄t
Et lorsque les constantes sont déterminées :
u(t) = E(cos(Êt) +
⁄
sin(Êt))e≠⁄t
Ê
Cette solution se découpe en deux parties :
– Une partie oscillante à la pulsation Ê ;
– Une amplitude décroissance de manière exponentielle.
Allure de la tension
Dans ce régime, il y a bien oscillations électriques.





Electrocinétique
EC3 : circuit RLC série
L’essentiel
Pseudo-période des oscillations
On observe donc des oscillations électriques à la
pulsation Ê, donc de pseudo-période :
2fi
2fi
T =
= Ô
Ê
Ê0 1 ≠ – 2





On parle de pseudo-période car l’amplitude décroît.
La pseudo-période est voisine mais plus grande que la période propre du circuit (celle qui
correspond à un circuit non amorti (R=0)).
Plus l’amortissement est fort (– ¬), plus la pseudo-période s’éloigne de la période propre.
Téléchargement

EC3 : circuit RLC série L`essentiel