**Initialement, le consommateur possède un revenu R.
Choc sur la contrainte budgétaire :
*augmentation du revenu de R à R’ → l’espace budgétaire augmente.
*Diminution du revenu de R à R” → l’espace budgétaire diminue.
La pente en valeur absolue : P1/P2 est inchangée.
x2
R’/P2
R/P2
R ”/P2
R ”/P1
(R ”˂ R)
(Diminution de R)
R /P1
R’ /P1
x1
(R’˃ R)
(Augmentation de R)
* Baisse du prix du bien1 :P1 à P1’, la pente en valeur absolue de la droite
budgétaire baisse et passe de P1/P2 à P1’/ P2 , ainsi la droite budgétaire pivote
vers le haut et l’ensemble budgétaire du consommateur augmente.
*Au sens contraire : si le prix du bien2 augmente de P1 à P1”, la pente en valeur
absolue de la droite budgétaire augmente et passe de P1/P2 à P1”/ P2 , ainsi la
droite budgétaire pivote vers le bas et l’ensemble budgétaire du consommateur
diminue.
x2
R/P2
R/P1”
R/P1
R/P1’
x1
1.2-Résolution du programme du consommateur :
A -la maximisation de l’utilité sous la contrainte du budget :
Le consommateur cherche à maximiser son utilité sous la contrainte de son
revenu. Ce choix de consommation peut être analysé de manière graphique mais
aussi de manière algébrique.
1.2.1-La résolution graphique :
*Pour atteindre le maximum d’utilité sous la contrainte de son revenu, le
consommateur doit choisir un panier qui se situe sur la courbe d’indifférence la
plus élevée possible et sur sa droite de budget (puisqu’il dépense tout son
revenu.).
x2
x’1
E
U¨
U’
U
x’2
x2
**Le panier E procure au consommateur un maximum d’utilité dans le respect
de sa contrainte budgétaire (CB). E est donc le panier optimal.
**En valeur absolue, la pente de la tangente en valeur absolue à la courbe
d’indifférence (C.I) est égale au TMS.
**la pente de la droite du budget est égale au rapport des prix.
**A l’équilibre, (au point E, panier optimal) , il y a égalité entre le TMS et le
rapport des prix des biens.
**A l’équilibre, on a donc égalité entre les utilités marginales pondérées par
tous les prix pour tous les biens.
TMS =Um1(x1, x2) /Um2(x1, x2) = P1/P2
Um1(x1, x2) / P2 = Um2(x1, x2) / P1
1.2.2- Résolution algébrique :
Max U(x1, x2)
x1, x2
Sous contrainte budgétaire (s.c) : P1.x1+P2.x2 = R
**Il y a deux méthodes pour résoudre ce programme :
1. la méthode de substitution.
2. La méthode du Lagrangien.
** Méthode par substitution**
La contrainte budgétaire est : P1.x1+P2.x2 = R
On exprime x2 en fonction de x1 :
x2= (- P1 / P2). x1 + R/ P2
On remplace x2 par son expression dans la fonction d’utilité :
U( x1 , x2(x1) ) = U( x1 , R/ P2 – (P1 / P2). x1 )
On maximise,
Max U( x1 , R/ P2 – (P1 / P2). x1)
X1
X2
On atteint l’optimum lorsque la différentielle totale de U par rapport à x1 est
nulle.
dU/ dx1 = ƏU/ Ə x1 + ƏU /Ə x2. dx2/ dx1 =0
(On a : d U= ƏU/ Ə x1.dx1 + ƏU /Ə x2. dx2)
dx2/ d x1 = - P1 / P2 (car : x2= (- P1 / P2). x1 + R/P2 )
 Retrouve bien que les valeurs d’équilibre (x1*, x2*)
(ƏU(x1*, x2*)/Ə x1) / (ƏU(x1*, x2*)/ Ə x2) = P1 / P2
→ Um1(x1*, x2*)/Um2(x1*, x2*)= P1 / P2
** Méthode de Lagrangien** :
La fonction de Lagrange, dite Lagrangienne s’écrit :
L(x1,x2, λ)= U(x1, x2)+ λ( R-P1.x1-P2. x2)
( λ ≠0)
Où λ est appelé ^^ multiplicateur de Lagrange^^
 Le théorème de Lagrange indique que les valeurs optimales de : x1 et
x2 respectent les trois conditions du premier ordre :
 ƏL(x1, x2, λ)/ Ə x1=0
 ƏL(x1, x2, λ)/ Ə x2=0
 ƏL(x1, x2, λ)/ Ə λ=0
ƏU(x1, x2)/ Ə x1 – λP1=0 (1)
ƏU(x1, x2)/ Ə x2 – λP2=0 (2)
R - P1.x1 – P2.x2 =0
(3)
(1)/(2)
(ƏU(x1, x2)/ Ə x1) / (ƏU(x1, x2)/ Ə x2) = P1 /P2
Um1(x1, x2) /Um2(x1, x2) = P1 /P2 (4)
Nous retrouvons donc le résultat précédent selon lequel le panier du
bien optimale est caractérisé par l’égalité entre le TMS et le rapport
des prix des biens.
La troisième condition du premier ordre (3) assure que le
consommateur sature sa contrainte de budget.
La résolution du système de deux inconnues des équations (3) et (4)
permet de déterminer le panier optimale ; c’est-à-dire les quantités :
x1* et x2* des biens 1 et 2
Exercice d’application :
B- La minimisation du revenu sous contrainte de l’utilité
Dans l’optique de J.HICKS, le consommateur cherche le panier de
biens qui lui permet de minimiser la dépense totale : P1.x1+ P2.x2 sous
la contrainte de U Ce choix de consommation peut être analysé de
manière graphique mais aussi de manière algébrique.
Minimiser D= P1.x1+P2.x2 (dépense)
SC : U = constante
Résolution graphique :
Il s’agit de retrouver le point e tangence entre la droite de budget la
plus basse possible et la courbe d’indifférence.
Correspondant à niveau d’utilité fixé U
La condition d’optimalité selon laquelle le TMS est égal au rapport des
prix est toujours valable.
X2
U
E
X1
Résolution algébrique :
Il s’agit de résoudre un problème de minimisation sous contrainte.
L(x1,x2, λ)= P1.x1+P2.x2 +λ(U – U(x1+x2) )
Minimiser : D(x1+x2) = P1.x1+P2.x2
SC : U(x, x2)= U constante
L(x1,x2, λ)= D(x1+x2) +λ(U – U(x1+x2) )
= P1.x1+P2.x2 +λ(U – U(x1+x2) )
Les conditions du premier ordre s’écrivent :
ƏL(x1, x2, λ)/ Ə x1=0
ƏL(x1, x2, λ)/ Ə x2=0
ƏL(x1, x2, λ)/ Ə λ=0
P1 - λ. ƏU(x1, x2)/ Ə x1=0
P2 – λ. ƏU(x1, x2)/ Ə x2 =0
U- U(x1, x2)=0
(1)’
(2)’
(3)’
P1 - λ .Um1 = 0
P2 – λ. Um2=0
U – U(x1, x2)=0
Il s’en suit que : (1)’/(2)’= Um1 / Um2= P1/P2 (4)’
Et la résolution du système de deux équations (3)’ et (4)’à deux
inconnues permet de déterminer les deux fonctions de demande
hicksiennes ; notées : h1(P1, P2,U) et h2(P1, P2,U)
(3)’ et (4)’
U- U(x1, x2)=0 (3)’
Um1 / Um2= P1/P2 (4)’
x2*=h2 et x1*=h1
la fonction de demande hicksienne est aussi appelée fonction de :
*revenu composé *, elle s’écrit :
e (P1, P2,U)= P1. h1(P1, P2,U)+ P2. h2(P1, P2,U)
=D*(x1*, x2*)= P1. x1*+ P2. x2*
(x1*=h1 et x2*= h2)
2- le choix du consommateur dans les situations particulières :
2-1-L’existence de solution en coin :
Dans certains cas le choix du panier peut se porter sur un panier
extrême. Dans ce cas la solution est dite en coin.
Paniers extrêmes
X2
Courbe supérieure
A la droite de budget
La droite de budget
Solution en coin
X2
 La consommation du bien 2 est nulle.
 Le panier se situe à l’intersection entre la CI la plus élevée possible et
la droite de budget soit (x*,0)
 La pente en valeur absolue de la CI (TMS) est plus élevée que celle de
la droite de budget.
2-2-le cas de biens complémentaires :
Le panier optimal (E) est celui qui correspond à l’angle de la CI la plus
élevée, il permet au consommateur de respecter sa contrainte
budgétaire.
X2
U1
X2*
E
U2
U3
X1*
X1
CHAPITRE4 : LA DEMANDE ET LES VARIATIONS DU REVENU
1-Les courbes de consommation –revenu et d’Engel :
1-1-La construction et les caractéristiques de ces courbes :
X2
R’’/P2
Courbe de consommation-revenu
R’/P2
R /P2
E3
E2
E1
R /P1 R’ /P1 R’’ /P1
X2
*En reliant : E1, E2 et E3 , nous obtenons la courbe de consommation-revenu ou :
«Chemin d’expansion du revenu »
*La courbe de consommation-revenu est le lieu géométrique des paniers qui
correspondent aux paniers optimaux du consommateur lorsque le revenu
varie.
*En chaque point de cette courbe, il y a une égalité entre le TMS et le rapport
des prix des biens. L’équation de cette courbe se déduit donc de cette égalité ;
elle est du type : x2=f(x1).
*La courbe d’Engel d’un bien est le lieu géométrique des consommations
optimales de ce bien, lorsque le revenu varie.
X1
Courbe d’Engel du bien 1
X1’’
X1’
X1
R1
R1’
R1’’
R
1-2-La courbe d’Engel et la classification des biens :
Un bien normal est un bien dont la consommation optimale augmente avec
l’augmentation du revenu.
La courbe d’Engel est dans ce cas croissante. Parmi les biens normaux, il faut
faire la différence entre :
* Un bien de première nécessité pour lequel la consommation optimale
augmente proportionnellement moins forte que celle du revenu. « C’est la loi
d’Engel »
*Un bien de luxe (ou supérieur) pour lequel la consommation optimale
augmente proportionnellement plus que le revenu.
Un bien inférieur est un bien dont la consommation optimale diminue lorsque
le revenu augmente. La courbe d’Engel est décroissante dans ce cas.
2-L’élasticité de la demande par rapport au revenu :
2-1-la définition et le calcul de cette élasticité :
L’élasticité de la demande par rapport au revenu mesure la sensibilité de la
demande d’un bien à une variation du revenu du consommateur.
En considérant la fonction de la demande continue et dérivable, l’élasticité du
bien i par exemple par rapport au revenu R s’écrit :
*exi /R= variation relative de xi/ variation relative du revenu
= (Ə xi /xi) / (ƏR/R)
= (Ə xi / ƏR)*R/xi
2-2-l’élasticité de la demande par rapport au revenu et la nature des biens :
si l’élasticité de la demande par rapport au revenu est :
*négative : alors, le bien est un bien inférieur.
*Positive : alors, le bien est un bien normal.
-Lorsqu’il s’agit d’un bien de première nécessité ; l’élasticité-revenu
est comprise entre 0 et 1.
-Elle est supérieur à 1 lorsqu’il s’agit d’un bien de luxe.
Chapitre5 : la demande et les variations des prix
1-les courbes de consommation-prix et de demande :
1-1-La construction de la courbe de consommation-prix :
Supposons que le prix du bien 1 varie tel que : (P1 ˃ P1’ ˃ P1’’)
tandis que celui du bien 2 et le revenu restent constants. R =constante
P2 =constante
D.B : x2= (-P1 /P2). x1 +R/P2
Variation de P1
déplacement de la droite budgétaire, elle pivote
autour d’un point fixe.
x2
R/P2
E3
E2
E1
R/P1
R/P’1
R/P1’’
x1
Modification de la pente de la DB.
La courbe de consommation- prix ou ( chemin d’expansion des prix) est
le lieu géométrique qui correspondent aux paniers optimaux du
consommateur lorsque le prix d’un bien varie.
1-2-La fonction de la demande inverse du consommateur :
P
P1
P1’
P ‘’1
x1
x’1
x’’1
C’est la relation entre le prix et la quantité du bien 1 considéré.
La quantité demandée du bien 1 augmente lorsque le prix de ce bien
diminue, il s’agit donc d’un bien normal.
x