Lycée Viette
TSI 1
Forces de Laplace
II . La force de Laplace
1. Les rails de Laplace


La tige  ( mobile sur les deux rails ) est parcourue par un courant  et est placée dans un
⃗ . ( on néglige le champ créé par le circuit électrique ).
champ magnétique uniforme 
La tige se met en mouvement sous l’action d’une force appelée force de Laplace.
2. La force de Laplace
La force de Laplace qui s’exerce sur le conducteur  placé dans un champ magnétique
uniforme a pour expression :
⃗⃗⃗⃗⃗⃗⃗ 
⃗
 = . 
 = . .  avec  = 
⃗)
Si le champ n’est pas uniforme :  = ∮(. ⃗⃗⃗
 
Rabeux Michel
Page 1
Lycée Viette
TSI 1
3. Puissance de la force de Laplace
La tige possède un mouvement de translation rectiligne de vitesse .
La puissance de la force de Laplace a pour expression :
⃗ ).  = . . . 
 =  .  = (. ⃗⃗⃗⃗⃗⃗⃗

avec  = 
III . Couple des forces de Laplace pour une spire rectangulaire
1. Actions mécaniques sur une spire rectangulaire
Soit une spire rectangulaire ( dimensions  =  et  =  ) parcourue par un courant .
Cette spire peut tourner autour d’un axe vertical passant par le milieu de deux côtés.
⃗
Cette spire est placée dans un champ magnétique uniforme 


 


⃗





 

 


⃗




 
Rabeux Michel



vue de dessus
Page 2
Lycée Viette
TSI 1
Le cadre est soumis à 4 forces de Laplace :
⃗ = . . . cos() . 
  = . ⃗⃗⃗⃗⃗⃗

⃗ = −. . . cos() . 
  = . ⃗⃗⃗⃗⃗⃗
 
Ces deux forces sont de somme nulle et de moment nul par rapport à l’axe de rotation 
⃗ = . . . 
  = . ⃗⃗⃗⃗⃗⃗⃗

⃗ = −. . . 
  = . ⃗⃗⃗⃗⃗
 
Ces deux forces sont de somme nulle mais de moment par rapport à l’axe non nul.
Ces deux forces constituent un couple de moment par rapport à l’axe 
 = . . . . sin() =  . . sin()
⃗⃗  
⃗
Le moment vectoriel du couple s’écrit :  = 
⃗0
Le torseur résultant est donc T = ( ⃗⃗
⃗)
 
La puissance des forces de Laplace s’écrit :  =  .  = . . . . sin() . 
2. Positions d’équilibre
Le cadre est en équilibre si  = 0 ou 
⃗⃗   
⃗ colinéaires et de même sens
Pour  = 0 l’équilibre est stable 
⃗⃗   
⃗ colinéaires et de sens contraire.
Pour  =  l’équilibre est instable 
IIII . Action d’un champ magnétique uniforme extérieur sur un aimant
Par analogie à l’action d’un champ magnétique sur un cadre, le champ magnétique exerce
⃗⃗  ) un couple de moment :
sur un aimant ( caractérisé par 
⃗⃗  
⃗
 = 
Ce couple tend à aligner le vecteur moment magnétique sur le vecteur champ magnétique
L’aimant est en équilibre si  = 0 ou 
⃗⃗   
⃗ colinéaires et de même sens
Pour  = 0 l’équilibre est stable 
⃗⃗   
⃗ colinéaires et de sens contraire.
Pour  =  l’équilibre est instable 
Hors équilibre il y a oscillation de l’aimant ( aiguille aimantée ).
Rabeux Michel
Page 3
Lycée Viette
TSI 1
La boussole ( aiguille aimantée ) s’oriente dans le champ magnétique terrestre.
Remarque : c’est au voisinage du pôle Nord géographique que se situe le pôle Sud de
l’aimant équivalent
IIV . Rotation d’une aiguille aimantée dans un champ tournant
1. Création d’un champ magnétique tournant

Soit un ensemble de 2 bobines identiques parcourues par des courants déphasés de 2
1 () = . cos(. )

2 () = . cos (.  − 2 ) = . sin(. )

⃗


. 
⃗⃗ 


1 ()
2 ()
⃗⃗ 
En  (équidistant des deux bobines) on place une aiguille aimantée caractérisée par 
Le champ magnétique résultant en  créé par les deux bobines s’écrit :
⃗  () = 
⃗  1 () + 
⃗  2 () = . (1 ().  + 2 ().  )

⃗  () = . (1 ().  + 2 ().  ) = . . (cos(. ) .  + (. ).  )

Ce vecteur tourne autour de l’axe  avec une vitesse angulaire 
Rabeux Michel
Page 4
Lycée Viette
TSI 1
2. Rotation de l’aiguille aimantée
⃗⃗  
⃗
L’aiguille est soumise à un couple de moment  = 
L’aiguille tourne à la vitesse angulaire , c’est le principe du moteur synchrone.
 remarque : s’il on utilise trois bobines, les déphasages entre les courants sont de
Rabeux Michel
2.
3

Page 5
Téléchargement

Lycée Viette TSI 1