Première STI Électrotechnique Chapitre 2
DIPOLES LINEAIRES
1. INTRODUCTION
1. Conventions
Le fonctionnement d’un dipôle fait intervenir :
Le courant qui le traverse
La tension à ses bornes
Chacune de ces deux grandeurs peut être mesurée algébriquement à l’aide d’un sens
positif choisi arbitrairement.
Conventions
Récepteur Générateur
Pour étudier un dipôle, il est possible de choisir l’une ou l’autre des deux conventions :
en principe, le choix ne dépend pas de la nature du dipôle. Cependant, si le
fonctionnement est connu, il est recommandé de choisir la convention générateur (ou
récepteur) selon que le dipôle fonctionne effectivement en générateur (ou en
récepteur).
2. Définition d’un dipôle linéaire
Un dipôle est dit linéaire lorsque, une convention ayant été adoptée,
La tension u à ses bornes est une fonction affine du courant i qui le traverse :
u = a.i + b
a et b sont des constantes propres au dipôle
La caractéristique u(i) est une droite.
2. DIPÔLES PASSIFS LINÉAIRES (D.P.L)
3. Définition. Loi d’Ohm
Un dipôle linéaire est dit passif si, en convention récepteur, la fonction affine
u = a.i + b se réduit à u = a.i avec a > 0.
Le coefficient de proportionnalité a s’appelle résistance électrique du dipôle.
On la note R.
1
i
u
i
u
Première STI Électrotechnique Chapitre 2
On a alors u = R.i C’est la loi d’Ohm relative à un D.P.L.
Symbole : ou
remarque : - les D.P.L. sont symétriques
- les D.P.L. sont aussi appelés conducteurs ohmiques ou résistifs
- ne pas confondre conducteur ohmique et résistance
2. Résistance et conductance
a. Résistance
La résistance d’un D.P.L. a pour mesure : R = U / I unité : Ohm ()
b. Conductance
Si on exprime le courant en fonction de la tension, on a :
I = U. 1 / R
Le coefficient de proportionnalité 1 / R , en général représenté par la lettre G, s’appelle
conductance du dipôle et s’exprime en Siemens (S)
I = G.U
3. Résistance d’un conducteur filiforme
Considérons un fil électrique :
de longueur l
de section s
On démontre que sa résistance s’écrit : R = ρ.l / s
ρ est un coefficient qui dépend du matériau constituant le fil : on l’appelle
résistivité du matériau. Elle s’exprime en .m.
4. Résistivité et température
On peut montrer expérimentalement que la résistance d’un fil métallique augmente
avec la température. Comme pendant l’échauffement les variations de longueur et de section
sont insignifiantes, on peut en conclure que la résistivité varie aussi avec la température.
On écrit ainsi :
R = R0.( 1 + a.θ ) R0 : résistance à 0°C.
θ : température en °C
a : coefficient de température du matériau
en (°C)-1
ρ = ρ0.( 1 + a.θ ) ρ0 : résistivité du fil à 0°C
2
R R
1 / 2 100%
Study collections
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !