es approches de population en pharmacologie concer-
nent principalement deux domaines : la pharmacoci-
nétique et la pharmacodynamique. S’y ajoute la com-
binaison des deux, la pharmacocinétique-pharmacodynamique.
Les premières études de pharmacocinétique de population sont
apparues il y a un peu plus de vingt années, et c’est de manière
plus récente que des aspects pharmacodynamiques y ont été
ajoutés (on parle, dans le jargon des spécialistes, d’études de
PK-PD, de l’anglais pharmacokinetic-pharmacodynamic stu-
dies). L’approche de population en pharmacologie combine
deux domaines : d’une part la modélisation, qui implique la
traduction en termes mathématiques du phénomène observé,
et, d’autre part, la statistique, qui implique l’utilisation d’une
population assez large. Le but de cet article est de proposer une
vision intuitive et simple (mais pas simpliste, j’espère) de ce
type d’approche. Des développements ultérieurs reprendront
certains aspects de manière plus détaillée et approfondie.
Dans les études traditionnelles de pharmacocinétique ou de phar-
macodynamique, l’unité d’analyse est l’individu (figure 1).
Typiquement, le protocole établit des conditions expérimentales
précises, avec éventuellement des critères d’inclusion ou
d’exclusion strictes, pour diminuer autant que possible les
sources de variabilité. Par exemple, on décide d’étudier la phar-
macocinétique d’un médicament chez l’insuffisant rénal, cet état
étant défini dans sa gravité par des limites précises, à l’aide de
marqueurs physiopathologiques. De plus, afin de décrire le
phénomène étudié le plus complètement possible chez chaque
individu, ce protocole va inclure un nombre important de temps
de mesures, les mêmes pour tous les individus, pour cerner le
phénomène étudié dans son ensemble. Les observations sont
ensuite traitées : il s’agit le plus souvent de modéliser le phéno-
mène étudié et d’en estimer les paramètres. L’expérimentation
se fait généralement sur un nombre réduit d’individus, et les para-
mètres moyens observés peuvent être de médiocres descripteurs
pour des groupes d’individus plus larges. De plus, ce schéma
expérimental apporte peu d’informations pertinentes (voire pas
du tout) sur la variabilité interindividuelle des paramètres.
Dans l’approche de population, l’unité d’analyse est une “popu-
lation”, c’est-à-dire un ensemble d’individus (figure 1). L’ap-
proche de population a tout d’abord été appliquée à la phar-
macocinétique, dans la deuxième moitié des années 70. L’idée
sous-jacente est que les paramètres pharmacocinétiques, utiles
pour déterminer ou rationaliser une posologie, peuvent varier
d’un individu à un autre, et encore plus d’un groupe d’indivi-
dus sains à un groupe de malades. Il est donc essentiel de
connaître les paramètres pharmacocinétiques moyens du médi-
cament dans la population cible, mais, en outre, d’identifier et
de mesurer l’influence des facteurs physiologiques ou patho-
logiques (ce sont les covariables, qui peuvent inclure les médi-
caments associés) susceptibles de modifier ces paramètres, afin
d’adapter au mieux la posologie. C’est le but que se propose la
pharmacocinétique de population.
La Lettre du Pharmacologue - Volume 16 - n° 3 - mai/juin 2002
79
MÉTHODOLOGIE
Approches de population et modélisation en pharmacologie
Population approach and modeling in pharmacology
!
S. Urien*
* Directeur de recherche à l’INSERM, laboratoire de pharmacologie, Centre
René-Huguenin, 92210 Saint-Cloud.
RÉSUMÉ.
Typiquement, dans l’approche de population, l’analyse porte sur un ensemble d’individus, dans lequel chaque individu fournit un petit
nombre de mesures pharmacocinétiques ou pharmacodynamiques, ainsi que certaines données individuelles, morphologiques, physiopatholo-
giques... L’analyse des données complexes combine modélisations mathématiques et statistiques. L’intérêt fondamental de cette approche réside
dans la possibilité d’étudier le médicament dans une pathologie cible, mais aussi dans des situations particulières, âges extrêmes de la vie,
maladies sévères ou états critiques.
Mots-clés :
Pharmacocinétique - Pharmacodynamique - Population - Médicament.
ABSTRACT.
The population approach typically analyses, together, sparce data including pharmacokinetic, pharmacodynamic or demographic
data, from a large set of individuals. The complex model development combines pharmacologic and statistical aspects. This approach provides
a valuable tool for obtaining information about the pharmacokinetics/pharmacodynamics of drugs in target patients or in special patients
groups, very young or elderly patients, critically ill patients.
Keywords :
Pharmacokinetics - Pharmacodynamics - Population - Drug.
L
Pour atteindre ce but, il est nécessaire d’étudier le médicament
dans la population cible, c’est-à-dire chez un groupe de malades
devant bénéficier du traitement. De plus, comme on veut
connaître la variabilité des paramètres pharmacocinétiques
(et/ou pharmacodynamiques), la population doit comporter un
nombre assez important d’individus (un effectif de 20 à 30
semble être un minimum). Enfin, si l’on cherche à déterminer
l’influence de certains facteurs physiologiques ou patholo-
giques (covariables) sur la pharmacocinétique ou la pharma-
codynamique, ces facteurs doivent varier de manière assez
importante dans la population étudiée. On revient encore à une
notion d’effectif assez large, car on cherche à mettre en évi-
dence une caractéristique de type statistique, une corrélation
entre un paramètre pharmacocinétique, par exemple, et une
caractéristique individuelle. Ce coût supplémentaire en termes
d’effectif est cependant compensé par la possibilité de réaliser
un nombre d’observations par individu extrêmement réduit.
Pour une étude pharmacocinétique, par exemple, on pourra se
contenter de 2 à 3 prélèvements par sujet, au lieu des 15 à 20
et plus requis pour une approche classique. Ce dernier point
constitue un net avantage, dans la mesure où il devient possible
d’étudier, par exemple, la pharmacocinétique d’un médicament
dans des populations autrefois exclues pour des raisons éthiques
(très jeunes enfants, vieillards, malades dans un état sévère).
De plus, il est également possible d’analyser les données éparses
provenant de stratégies thérapeutiques ou d’essais cliniques de
phase 3 ou 4, pendant lesquels une ou quelques observations
sont recueillies pour chaque patient, à des temps “praticables”
plutôt que déterminés à l’avance.
COMMENT ESTIMER ET QUANTIFIER LES PARAMÈTRES
DE POPULATION ?
À ce stade, on peut résumer et définir ce qu’est l’approche de
population en pharmacocinétique-pharmacodynamique, ici
appliquée à la seule pharmacocinétique par L.B. Shiener
(1984) : “Les paramètres pharmacocinétiques de population
quantifient, pour la population étudiée, la pharmacocinétique
moyenne, la variabilité interindividuelle et la variabilité rési-
duelle, incluant la variabilité intra-individuelle et l’erreur de
mesure”.
La figure 1 compare schématiquement les méthodes utilisées
dans les deux approches, classique et de population. La diffé-
rence essentielle avec l’approche traditionnelle est que toute
l’information est analysée au moyen d’un modèle “pharmaco-
statistique”, qui permet d’évaluer simultanément les paramètres
du modèle pharmacologique (clairance, volume de distribution,
effet maximal…) et du modèle statistique. Ces modèles se
décomposent eux-mêmes en sous-modèles. Le modèle phar-
macologique ou modèle à effets fixes, ou encore modèle struc-
turel, est composé du modèle pharmacocinétique auquel
s’ajoute éventuellement l’influence de telle caractéristique indi-
viduelle (covariable) sur certains paramètres pharmacociné-
tiques. Soit, par exemple, la perfusion intraveineuse d’un médi-
cament, dont la pharmacocinétique est monocompartimentale
et la clairance proportionnelle au poids corporel. Le modèle
structurel s’écrira au moyen de deux équations, de manière très
simplifiée :
Le modèle statistique, ou modèle d’erreur, décrit les effets aléa-
toires, c’est-à-dire la variabilité de la pharmacocinétique ou de
la pharmacodynamique. Cette variabilité se décompose elle-
même en :
"Variabilité interindividuelle. Chaque individu est différent :
ses paramètres structurels sont spécifiques et diffèrent des para-
mètres de population. Les paramètres moyens de population
sont donc estimés à une erreur près, qui décrit la variabilité des
paramètres dans la population.
"Variabilité résiduelle. Elle inclut les erreurs de mesure, des
temps de recueil, de déviation du modèle mathématique par
rapport à la réalité.
"Enfin, de façon récente, une troisième source de variabilité
peut être prise en compte, c’est la variabilité interoccasion,
qui rend compte de la variation des paramètres au cours du
temps, lors de réadministrations du médicament largement
espacées dans le temps.
La méthode le plus souvent utilisée pour l’analyse des données
de population est donc cette “modélisation combinée des dif-
férents effets” (librement adapté de l’anglais mixed effect mode-
ling). Cette méthode est implémentée dans le programme NON-
MEM (Non Linear Mixed Effects Modeling), qui est le standard
pour ce type d’analyses. La méthode d’estimation est dite
80
La Lettre du Pharmacologue - Volume 16 - n° 3 - mai/juin 2002
MÉTHODOLOGIE
Clairance = a x poids + b (1)
Concentration = fonction (volume de distribution, clairance, temps) (2)
Figure 1. La modélisation en pharmacologie – comparaison des
approches classique et de population. Dans l’approche classique, à
gauche, les phénomènes sont étudiés le plus complètement possible,
individu par individu (“de l’individu à la population”). Dans une
approche de population, à droite, les phénomènes sont analysés sur
le groupe tout entier au moyen d’un “modèle pharmaco-statistique”
qui permet d’extraire simultanément les paramètres pharmacolo-
giques et les variabilités interindividuelles et résiduelles (“de la popu-
lation à l’individu”).
Individu
Modèle
pharmacologique
Statistiques…
Moyenne
Écart-type
des paramètres
Population
Modèles statistiques
d'erreur
- interindividuelle
- résiduelle
Modèle
pharmacologique
Effet des covariables individuelles
Modèle pharmaco-statistique
Mesures
Plusieurs
individus
paramétrique, car elle suppose une distribution (normale ou
log-normale) des paramètres. Il existe également d’autres pro-
grammes, dont certains utilisent des méthodes d’estimation non
paramétriques, ne supposant pas a priori de distribution spéci-
fique des paramètres.
De fait, c’est l’analyse des données qui reste délicate dans l’ap-
proche de population. Il découle du principe même de la
méthode, combinant plusieurs types de modèles, qu’il existe
des interactions entre modèle structurel et modèles d’erreur,
d’une part, et, au sein du modèle structurel, entre modèles fai-
sant intervenir des covariables individuelles et modèle phar-
macologique d’autre part. En termes plus simples, un choix sur
l’un des modèles peut influencer les choix sur les autres
modèles. Tout cela rend la modélisation complexe et même
laborieuse, exigeant la mise en place de nombreux tests et cri-
tères de validation (y compris des tests graphiques) tout au long
de la progression de l’analyse. D’autres problèmes sont liés aux
aspects logistiques des études (organisation, recueil des don-
nées), au fait que les temps de prélèvement ne sont pas iden-
tiques chez tous les patients (il est souvent difficile de faire
comprendre ce point…). Le tableau I résume les avantages et
les inconvénients de l’approche de population.
CONCLUSION
L’approche de population est une méthodologie extrêmement
séduisante pour évaluer les caractéristiques pharmacocinétiques
et pharmacodynamiques d’un médicament dans une population
donnée, et en particulier dans des populations cibles. De plus,
elle renseigne sur les sources de variabilité en situation théra-
peutique, et peut contribuer à l’individualisation de la posolo-
gie lorsqu’une relation est démontrée entre une caractéristique
individuelle et un paramètre pharmacocinétique ou pharmaco-
dynamique (figure 2). #
POUR EN SAVOIR PLUS
– Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics
of pharmacokinetic parameters from routine clinical data. J Pharmacokinet
Biopharm 1977 ; 5 : 445-79.
– Sheiner LB. The population approach to pharmacokinetic data analysis : ratio-
nale and standard data analysis methods. Drug Metab Rev 1984 ; 15 : 153-71.
– Rosenbaum SE, Carter AA, Dudley MN. Population pharmacokinetics : fundamen-
tals, methods and applications. Drug Develop Industr Pharm 1995 ; 21 : 1115-41.
– Flühler H, Huber H, Widmer E, Brechbühler S. Experiences in the application of
NONMEM to pharmacokinetic data analysis. Drug Metab Rev 1984 ; 15 : 317-39.
– McLachlan AJ. Sparse drug concentration data analysis using a population
approach : a valuable tool in clinical pharmacology. Clin Exp Pharmacol Physiol
1996 ; 23 : 995-9.
– Samara E, Granneman R. Role of population pharmacokinetics in drug deve-
lopment. Clin Pharmacokin 1997 ; 32 : 294-312.
Wilson JT, Kearns GL, Murphy D, Yaffe SJ. Peadiatric labelling requirements.
Implications for pharmacokinetic studies. Clin Pharmacokin 1994 ; 26 :308-25.
– Kisor DF, Watling SM, Zarowitz BJ, Jelliffe RW. Population pharmacokinetics
of gentamicin. Use of the nonparametric expectation maximisation algorithm.
Clin Pharmacokin 1992 ; 23 : 62-8.
– Steimer JL, Mallet A, Golmard JL, Boisvieux JF. Alternative approaches to esti-
mation of population pharmacokinetic parameters : comparison with the non-
linear mixed effect model. Drug Metab Rev 1984 ; 15 : 265-92.
La Lettre du Pharmacologue - Volume 16 - n° 3 - mai/juin 2002
81
MÉTHODOLOGIE
Tableau I. Avantages et inconvénients de l’approche de population en pharmacocinétique-pharmacodynamique.
Avantages
"Diminution du coût de l’étude (cela est surtout vrai si les données sont
recueillies en routine, dans un but de suivi thérapeutique. Le coût est alors
absorbé dans le cadre des soins. Il peut cependant être nécessaire d’ajouter des
observations, non indispensables au suivi, pour rendre l’analyse possible)
"Le nombre faible d’observations rend possible (éthique) l’étude sur des
malades, et aux âges extrêmes de la vie
"Étude sur des patients représentatifs, appelés à bénéficier d’un tel traitement
"Les données peuvent être éparses (ne pas répondre à un schéma strict)
"Détection et quantification des caractéristiques individuelles qui influen-
cent les paramètres, d’où la possibilité d’individualiser la posologie
"En plus des paramètres pharmacologiques habituels, les variabilités inter-
individuelles et résiduelles sont estimées
Inconvénients
"Les données de routine ne provenant pas d’un protocole expérimental
strict, il peut être difficile de recueillir toute l’information (horaires exacts
des observations, posologie exacte et historique)
"Le nombre d’individus doit être élevé (au moins plus de 20-30 individus,
“le plus, le mieux”)
"Les données doivent être recueillies avec autant de précision que dans une
étude classique, ce qui est plus difficile à réaliser dans ce type d’étude
"Le recueil des données est sensiblement plus lourd : on doit collecter un
nombre assez large de covariables individuelles pour l’analyse (morpholo-
giques, physiologiques, pathologiques, médicaments associés)
"Modélisation complexe faisant intervenir la modélisation pharmacociné-
tique et/ou pharmacodynamique, plus des covariables individuelles et des
modèles de variabilité. Logiciels de maniement souvent difficiles, pour
utilisateurs bien formés. Techniques de validation des résultats diverses,
souvent complexes (encore sujettes à discussion)
Figure 2. Schéma montrant l’utilité pratique des approches
de population en pharmacocinétique-pharmacodynamique.
Modélisation
pharmacocinétique-
pharmacodynamique
Paramètres de population
Oui Non
Mise en évidence
de facteurs individuels
influençant les paramètres,
populations spécifiques
Individualisation
a priori de la posologie
Optimiser les essais
thérapeutiques
Adaptation a posteriori
de la posologie si marge
thérapeutique étroite
et variabilité élevée
Feedback
Réinjecter l'information,
affiner le modèle
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !