CHAPITRE III L’EAU DANS LES SOLS
19
III.1.DEFINITION:
L’eau, de part qu’il entre dans la constitution des sols, sa présence est l’origine de plusieurs phénomènes
caractérisant le sol tels que capillarité et pression interstitielle. D’autre part, l’eau a un effet direct sur le
comportement des sols fins (voir limites d’Atterberg). Elle est un facteur important dans la plupart des
problèmes géotechniques telles que gonflement, gel, percolation, tassement, glissement…A titre statistique,
les pertes de vies humaines causées par la rupture de barrages et digues (par érosion interne) sont plus
importantes de toute perte causée par les autres types de rupture d’ouvrages de génie civil. Les pertes
matérielles et le coût d’entretient des structures sous sols gonflants sont les plus importantes que les
dommages causés par inondations, ouragans, tornades et tremblements de terres.
III.2. DIFFERENTS ETATS DE L’EAU DANS LES SOLS :
III.2.1. Nappes souterraines :
Lorsque les sols sont saturés, que l’eau est libre de circuler et qu’un gradient hydraulique apparaît, on parle
alors de nappe souterraine. En particulier, on distingue :
Les terrains aquifères dans lesquels l’eau circule avec des débits importants. Ils sont constitués de
sols ou de roches perméables.
Les terrains aquifuges qui sont si peu perméables que les débits sont insignifiants. Ils se comportent
donc comme des sols ou roches imperméables.
Surface de la nappe, surface de l’eau limitant la partie supérieure de la nappe.
Nappe libre, nappe où la pression interstitielle de l’eau au niveau de la surface est nulle.
Nappe phréatique, première nappe libre rencontrée depuis la surface. La surface de cette nappe
s’appelle le niveau phréatique.
Nappe artésienne, nappe pour laquelle la pression de l’eau à la surface de la nappe est positive.
Une telle nappe est généralement prisonnière entre deux couches de terrains aquifuges.
Nappes artificielles, ce sont des nappes créées par l’homme, telles celles qui existent à l’intérieur du
corps d’un barrage en terre.
III.2.2. L’eau dans les sols :
L’eau dans le sol peut se présenter sous trois formes différentes :
Eau de constitution : c’est l’eau de cristallisation Exemple : gypse (SO
4
Ca,2H2O , ou encore appelé
plâtre).
Eau adsorbée : c’est l’eau de mouillage des grains solides. Elle est fixée à la surface de ceux-ci en
formant un film mince.
Eau libre : contrairement aux cas précédents, pour lesquels l’eau est solidaire des grains solides,
l’eau libre remplit les interstices formés par les grains solides et peut y circuler.
CHAPITRE III L’EAU DANS LES SOLS
20
III.3. HYDRAULIQUE DES SOLS - HYPOTHESES DE BASE - :
Pour étudier l’écoulement de l’eau dans les sols, les hypothèses suivantes sont considérées :
1. Le sol est saturé.
2. L'eau et les grains sont incompressibles.
3. La phase liquide est continue.
Soit un volume quelconque de sol saturé (V), limité par une surface
(S) et traversé par un écoulement (figure III.1). Dans un intervalle
de temps donné dt, un volume d'eau dV
1
pénètre à I’ intérieure de
(S) et un volume d'eau dV
2
en sort. Si on suppose que les grains
n’ont pas bougé, c'est-à-dire si (V) est un domaine fixe de l'espace,
et en vertu de I’ hypothèse 2, le volume d'eau V
w
contenu dans (S)
reste le même.
Par suite, dV1= dV2. Le débit est conservé.
Figure III.1 : Schéma représentatif
C'est la condition de continuité.
III.4. PROPRIETE DE L’EAU LIBRE : ECOULEMENT LINEAIRE A TRAVERS UN SOL:
Considérons un cylindre de sol de section S (Figure III.2) et supposons qu’il se produise un écoulement de
M vers N.
Figure III.2 : Ecoulement dans un tube
III.4.1. Vitesse de l’eau dans le sol :
Soit Q le débit à travers S. la vitesse apparente v de l’eau est par définition :
Cette définition bien que la plus utilisée, donne une vitesse fictive car en réalité l’eau ne circule que dans les
pores de surface n.S (n étant la porosité du sol) d’une part et d’autre part, les trajectoires sont
vraisemblablement tortueuses. On définit la vitesse moyenne v’ par le rapport :
CHAPITRE III L’EAU DANS LES SOLS
21
III.4.2. Charge hydraulique – perte de charge - :
Dans l'étude de l'écoulement d'un fluide sous l'action de la pesanteur on appelle charge hydraulique en un
point M la quantité :
Avec V
M
: vitesse de I’eau au point M.
U
M
: pression de l'eau en M (en prenant pour origine des pressions la pression atmosphérique),
appelée la pression interstitielle.
Z
M
: altitude du point M par rapport à un plan de référence arbitraire mais qui, judicieusement choisi,
peut simplifier les calculs
g : accélération due à la pesanteur.
Remarque :
1. La charge h
m
s’exprime en m.
2. Dans les sols les vitesses d’écoulement sont si faibles (10 cm/s grand maxi) que l’on peut négliger la
quantité .
La charge hydraulique s’écrit alors : (Théorème de Bernoulli)
La variation de charge dh subie par I’eau dans son mouvement de M à N (dans le sens de l'écoulement) est égale à
h
M
- h
N
. Cette variation est négative.
On appelle perte de charge la quantité – dh :
La pression interstitielle U est mesurée par la hauteur d'eau dans un tube piézométrique (appelé aussi
piézomètre) pénétrant dans le sol jusqu'au point considéré. (Figure III.3)
Soit M le point considéré et A le niveau supérieur de I'eau dans le tube. La charge hydraulique est la même
en A et en M puisqu'il n 'ya pas écoulement entre ces deux points. Ces surfaces portent le nom de surface
équipotentielle.
Figure III.3 : Notion de perte de charge
CHAPITRE III L’EAU DANS LES SOLS
22
La surface libre de l'écoulement est constituée de ligne de courant confondue avec la ligne piézométrique qui
leur est associée (U
M
= 0, quel que soit le point M considéré appartenant à la surface de l'écoulement).
III.4.3. Gradient hydraulique :
On définit le gradient hydraulique i entre deux points A et B par le rapport :
Si A est voisin de B
A noter :
Figure III.4 : Définition du gradient hydraulique
Cette relation définie dans un milieu unidirectionnelle se généralise aisément dans un milieu à deux
ou trois dimensions. On a alors :
Si la charge hydraulique est la même en tout point du milieu ; l’eau interstitielle est dite en équilibre
hydrostatique.
i est une quantité sans dimension.
En tout point M du sol, le vecteur et la ligne de courant sont tangents et sont orientés dans le
même sens.
Cette perte de charge « i » traduit le frottement exercé par l’eau sur le squelette solide. La poussée
d’écoulement qui en sulte est à l’origine de nombreux sinistres (glissement de terrain, formation de
renard).
III.4.4. Loi de Darcy :
Les expériences de Darcy (publiées en 1986), qui sont à la base de l'hydraulique souterraine étaient relatives
à l'écoulement de I'eau dans une conduite verticale remplie de sable en régime permanent. Dans un tel cas,
les lignes de courant sont rectilignes et parallèles.
La loi, établie expérimentalement, peut être étendue au cas d'un écoulement monodimensionnel de direction
quelconque.
La loi de Darcy exprime que la vitesse de décharge est proportionnelle au gradient hydraulique.
CHAPITRE III L’EAU DANS LES SOLS
23
La circulation de I'eau s'effectue en régime laminaire .Le coefficient « K » ainsi introduit est une
caractéristique du sol étudié. ll est appelé coefficient de perméabilité. Sa dimension est celle d'une vitesse
puisque « i » est sans dimension.
La perméabilité varie beaucoup avec la nature du terrain. Le tableau III.1 près donne les intervalles de
valeurs correspondant aux perméabilités de différents types de sol :
Tableau III.1 : Perméabilité des différents types de sol
Remarques :
Pour avoir un ordre de grandeur facile à retenir : 10
-8
m /s représente une vitesse de 30 cm par an
environ.
Les roches non fissurées ont des perméabilités variant de 10
-12
à 10
-10
m /s.
Dans le cas d'un sable à granulométrie serrée ( Cu< 2), on peut obtenir une estimation du coefficient
de perméabilité à I’ aide de la relation empirique de Hazen:
K=D
102
où k est exprimée en m/s et D
10
est exprimé en cm.
L’équation du débit à travers une section S de sol, s’écrit alors en fonction de i et K :
III.5. MESURE DE LA PERMEABILITE DU SOL EN LABORATOIRE :
Divers procédés sont utilisés pour déterminer la perméabilité d’un sol. Le plus simple est l’utilisation d’un
perméamètre.
Le principe de la mesure consiste à relier le débit q traversant un échantillon cylindrique de sol saturé
( écoulement uniforme ) à la charge h sous laquelle se produit l' écoulement . Suivant l'ordre de grandeur de
la perméabilité du sol étudié on sera amené à travailler sous charge constante (perméabilités élevées :
k > 10
-5
m /s) ou sous charge variable (faibles perméabilités : k < 10
-5
m/s).
III.5.1. Perméabilité à charge constante :
Le niveau de I'eau dans le réservoir étant maintenu constant, on a, en prenant le plan de référence au niveau
de sortie de I'eau (Figure III.5)
1 / 10 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !