f(τ, A)
A(τ)
σ n+1 σ0f
(τ, A)
A⊂(τ)f
f
τ
A
n+ 1
Sn(τ, A)
k
τ
k
n+ 1 k
G2,n :Sn+1 →Snσ7→ σ0
q= 2
m=q−1S[n+1,n+m]Sn+m
1,2, . . . , n S[n+1,n+m]
{n+1, . . . , n+m}m Aq,n
S[n+1,n+m]\Sn+mSn+m
S[n+1,n+m]Sn+mS[n+1,n+m]·σ σ ∈Sn+m
Sn+mS[n+1,n+m](m+n)!
m!= (m+ 1)(m+ 2) ···(m+n) =
q(q+ 1) ···(q+n−1)
Gq,n :Aq,n →Snm
σ∈Sn+mσ(i)06i<n+m
σ(0) =σ σ(i+1) σ(i)σ(i)∈Sn+m−i
σ(m)∈Sn
∀σ∈Sn+m,∀τ∈S[n+1,n+m],(τ◦σ)(m)=σ(m).
σ7→ σ(m)Gq,n :Aq,n →Sn
τ∈Snq(τ)Gq,n
fmσ∈Sn+mfm(σ) = (σ(m), gm(σ))
gm(σ) : (σ(m))→[q] = {0,1, . . . , m}r σ(m)
i r σ(i)fm:Sn+m→Eq,n
Eq,n (τ, g)τ∈Sng(τ)
[q] = {0, . . . , m}
σ∈Sn+mτ∈S[n+1,n+m]fm(τ◦σ) = fm(σ)
Aq,n →Eq,n fm
6n:S[n+1,n+m]\Sn+m→[m+ 1] × ··· × [m+n]σ7→ (k1(σ), . . . , kn(σ)) k1<
k2<··· < knσ(ki)6n
τ∈S[n,n+m]