10:00-10:30 Jean-Philippe Bouchaud Une approche instanton pour les intégrales de Harish-Chandra-Itzykson-Zuber dans la limite de grand N

Cleaning correlation matrices,
HCIZ integrals &
Instantons
J.P Bouchaud
with: M. Potters, L. Laloux, R. Allez, J. Bun, S. Majumdar
Thank you Alain for having taught me so much!
Empirical Correlation Matrices
Empirical Equal-Time Correlation Matrix E
Eij =1
TX
t
Xt
iXt
j
σiσj
Order N2quantities estimated with NT datapoints.
When T < N,Eis not even invertible.
Typically: N= 500 2000; T= 500 2500 days (10 years)
q:= N/T =O(1)
In many application (e.g. portfolio optimisation) one needs
to invert the correlation matrix – dangerous!
How should one estimate/clean correlation matrices?
Rotational invariance hypothesis (RIH)
In the absence of any cogent prior on the eigenvectors, one
can assume that Cis a member of a Rotationally Invariant
Ensemble – “RIH”
In finance: surely not true for the “market mode”
~v1(1,1,...,1)/N, with λ1Nρ, but OK in the bulk
“Cleaning” Ewithin RIH: keep the eigenvectors, play with
eigenvalues
The simplest, classical scheme, shrinkage:
C= (1 α)E+αIb
λC= (1 α)λE+α, α [0,1]
RMT: from ρC(λ) to ρE(λ)
Solution using different techniques (replicas, diagrams, free
matrices) gives the resolvent GE(z) = N1Tr(EzI) as:
GE(z) = Zdλ ρC(λ)1
zλ(1 q+qzGE(z)),
Example 1: C=I(null hypothesis) Marcenko-Pastur [67]
ρE(λ) = q(λ+λ)(λλ)
2πqλ , λ [(1 q)2,(1 + q)2]
Suggests a second cleaning scheme (Eigenvalue clipping, [Laloux
et al. 1997]): any eigenvalue beyond the Marcenko-Pastur
edge can be trusted, the rest is noise.
Eigenvalue clipping
λ < λ+are replaced by a unique one, so as to preserve TrC=N.
1 / 22 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !