2010-2011 Tutorat UE4 Biostatistiques Séance n° 1 1 / 5
TUTORAT UE4 2010-2011 Biostatistiques
Séance n°1 Semaine du 04/ 10 /2010
Mesure des phénomènes en sciences de la vie Dujols
Statistiques descriptives et échantillonnage Daurès
Rappels de probabilités - Molinari
Séance préparée par Médecine Montpellier
QCM n°1 : Concernant l’observation et la neutralité :
a) Il peut exister des biais d’observation et de sélection.
b) La non-neutralité de l'observateur vis à vis de l'objet étudié induit un biais d'observation
c) Le choix de l'outil d'observation doit être adapté à l'objet étudié
d) Dans une étude en population, observer uniquement des patients hospitalisés peut conduire à un
biais de sélection.
e) L’observation peut parfois induire une modification du phénomène observé.
f) Toutes les réponses précédentes sont fausses.
QCM n°2 : Concernant la démarche expérimentale en sciences de la vie :
a) On écrit le protocole d’une expérience avant d’émettre une hypothèse.
b) Le protocole d’une expérience décrit les conditions de l’expérience, l’hypothèse émise et la
méthode utilisée.
c) La variabilité des paramètres en Biologie-Santé fonde l'incertitude de leur mesure
d) Tester une hypothèse par une expérimentation en Biologie-Santé implique de travailler sur des
groupes de sujets aussi aléatoires que possible sur tout sauf la cause et l'effet
e) La compréhension des résultats d’une expérience doit toujours tenir compte de l’incertitude.
f) Toutes les réponses précédentes sont fausses.
QCM n°3 : Concernant la variabilité :
a) Il existe deux grands niveaux de variabilité : intra et inter sujet.
b) Il est toujours possible de maitriser toutes les variables d’une expérience.
c) Le tirage au sort des sujets entre groupes à observer permet, théoriquement, de répartir de façon
homogène les variables, autres que la cause, susceptibles de jouer sur la relation entre cause à
effet.
d) Le tirage au sort permet d’éviter les biais de sélection.
e) Le tirage au sort ne permet pas la généralisation des résultats obtenus car les sujets de
l’échantillon ne sont jamais parfaitement représentatifs de la population.
f) Toutes les réponses précédentes sont fausses.
2010-2011 Tutorat UE4 Biostatistiques Séance n° 1 2 / 5
QCM n°4 : Concernant la variabilité :
a) Dans toute observation, il faut toujours conserver objectivité et neutralité.
b) L’observation en aveugle permet de ne pas connaître les modalités de la cause.
c) Dans le cas d’un essai thérapeutique avec deux traitements, l’aveugle de l’observé correspond au
fait qu'il ne connaisse pas de quel groupe il fait partie.
d) Dans le simple aveugle, ni le médecin ni le patient ne connaissent le traitement attribué.
e) Dans le triple aveugle, ni le médecin, ni le patient, ni l’interpréteur ne connaissent le groupe auquel
a été affecté le patient
f) Toutes les réponses précédentes sont fausses.
QCM n°5 : Concernant les définitions :
a) Le lancer d’une pièce de monnaie est une épreuve dont l’espace fondamental comporte deux
événements aléatoires équiprobables.
b) Chez les diabétiques, la probabilité d’avoir une complication rétinienne est de 0,3, la probabilité de
souffrir de complications nerveuses est de 0,5, et celle d’être touché par les deux complications est
de 0,2 ; alors, la probabilité de ne développer aucune des deux complications est de 0,6.
c) Lors d’un lancer de dé, lévénement contraire de « obtenir un 1 ou un 3 » est « obtenir un nombre
pair et supérieur ou égal à 4 ».
d) Si A et B sont deux événements indépendants, alors P(A∩B) = P(A) + P(B).
e) Lors d’un lancer de dé, la probabilité de ne pas obtenir un 2 vaut 5/6.
f) Toutes les réponses précédentes sont fausses.
QCM n°6 : Lors d’un tiercé comportant 10 chevaux sur la ligne de départ :
a) On peut obtenir 3 628 800 classements différents d’arrivée des 10 chevaux.
b) Le nombre d’arrivées différentes des 3 premiers chevaux en tenant compte de l’ordre est de 120
c) Le nombre d’arrivées différentes des 3 premiers chevaux en tenant compte de l’ordre est de 720
d) Le nombre d’arrivées différentes des 3 premiers chevaux sans tenir compte de l’ordre est de 5040
e) Le nombre d’arrivées différentes des 3 premiers chevaux sans tenir compte de l’ordre est de 120
f) Toutes les réponses précédentes sont fausses.
QCM n°7 : Dans un jeu de 32 cartes, on tire simultanément et au hasard 3 cartes. Soit
l’événement A : « tirer 3 dames » et l’événement B : « tirer 3 cœurs » :
a) L’ensemble de tous les événements possibles Ω est constitué par les 32 cartes du jeu.
b) La probabilité de réaliser l’événement B vaut 336/4960.
c) La probabilité de réaliser l’événement A vaut 4/4960.
d) La probabilité de ne réaliser ni l’événement A, ni l’événement B vaut 4900/4960.
e) La probabilité de ne tirer ni une dame, ni un cœur vaut 1330/4960.
f) Toutes les réponses précédentes sont fausses.
QCM n°8 : Dans une maison de retraite comportant 56 résidents, on s’intéresse à la
prévention de l’infection grippale saisonnière par la vaccination. La probabilité qu’un
résident non vacciné contracte la grippe est de 0,6 alors que la probabilité qu’un
résident vacciné contracte la grippe vaut 0,1. 75 % des résidents sont vaccinés :
a) La probabilité d’avoir la grippe pour un résident de la maison de retraite vaut 0,225.
b) La probabilité de ne pas être vacciné et de ne pas avoir la grippe vaut 0,4.
c) La probabilité d’être vacciné et de ne pas avoir la grippe vaut 0,675.
d) La probabilité pour un résident d’avoir la grippe sachant qu’il n’est pas vacciné vaut 0,15.
e) La probabilité pour un résident d’avoir la grippe sachant qu’il est vacciné vaut 0,1.
f) Toutes les réponses précédentes sont fausses.
2010-2011 Tutorat UE4 Biostatistiques Séance n° 1 3 / 5
QCM n°9 : Pour dépister le cancer de la prostate, on dose l’antigène prostatique
spécifique (PSA) dans le sang. La probabilité d’avoir un taux normal de PSA dans la
population est de 0,8 ; la probabilité d’avoir un cancer de la prostate sachant que le taux
est anormal vaut 0,75, tandis que la probabilité d’avoir un cancer de la prostate alors
que le taux est normal est de 0,10. Quelle est (à 5 % près) la probabilité pour un patient
d’avoir un taux normal sachant qu’il a un cancer ?
a) 0,10
b) 0,65
c) 0,53
d) 0,35
e) 0,90
f) Toutes les réponses précédentes sont fausses.
QCM n°10 : Concernant le modèle probabiliste de la démarche diagnostique :
M
M
S
g
h
S
i
j
a) La spécificité est la probabilité que le test diagnostique soit négatif chez les individus malades.
b) La sensibilité est la probabilité que le test diagnostique soit positif chez les individus malades.
c) Se =
hg g
d) VPN =
ji j
e) La valeur prédictive positive ne dépend pas de la prévalence de la maladie
f) Toutes les réponses précédentes sont fausses.
QCM n°11 : Dans un service d’urgences, on étudie un test biologique, le dosage du taux
plasmatique de Procalcitonine dans le cadre du diagnostic d’appendicite. On obtient le
tableau de résultats suivants :
Appendicite
Test positif
225
Test négatif
41
a) Se = 0,85
b) Sp = 0,82
c) VPP = 0,82
d) VPN = 0,77
e) Si le nombre total d’individus recrutés pour l’étude augmente, la sensibilité et la spécificité du test
vont être modifiées.
f) Toutes les réponses précédentes sont fausses.
2010-2011 Tutorat UE4 Biostatistiques Séance n° 1 4 / 5
QCM n°12 : On suit dans le cadre d’une étude prospective une population
exclusivement féminine de travailleuses : on étudie la relation entre un travail de nuit
régulier et le cancer du sein. On obtient les résultats suivants :
Cancer du sein
Travail de nuit
régulier
241
Pas de travail
de nuit régulier
220
a) RR = 1,16 (à 5 % près)
b) RR = 0,86 (à 5 % près)
c) A partir de ce risque relatif estimé, on peut dire que le travail de nuit régulier est un facteur de
protection du cancer du sein chez la femme.
d) A partir de ce risque relatif estimé, on peut dire que le travail de nuit régulier est un facteur de
risque du cancer du sein chez la femme.
e) On peut émettre une conclusion clinique définitive quant au lien entre travail de nuit régulier et
cancer du sein chez la femme à partir du seul risque relatif estimé.
f) Toutes les réponses précédentes sont fausses.
QCM n°13 : Echantillonnage :
Lors des inscriptions, on sélectionne au hasard 30 PACES en considérant cet échantillon comme
représentatif de la population totale des étudiants de 1ère année de santé.
On étudie leur temps de travail personnel quotidien et on obtient le tableau suivant :
Effectif
5
1
4
3
3
4
1
1
2
6
Heure de travail
5h
1h
2h
4h30
6h
2h30
3h45
7h
4h
5h15
a) Le temps de travail est une variable quantitative discrète.
b) La moyenne de travail de cet échantillon est 4h12.
c) L’écart-type de l’échantillon est 1.52.
d) Le choix des 30 premiers étudiants inscrits (plutôt qu’un choix au hasard) aurait pu biaiser les
résultats.
e) La moyenne de cet échantillon est une bonne estimation de la moyenne de la population étudiante
en PACES.
f) Toutes les réponses précédentes sont fausses.
QCM n°14 : Suite du QCM 8 :
a) L’erreur standard est directement proportionnelle à l’écart type de la population.
b) L’estimation de la variance dans la population est de 1.54.
c) Plus la taille de l’échantillon grandit, moins la différence entre la variance et son estimation est
importante.
d) Si =0, alors il n’y a pas de variabilité.
e) La variance et l’écart type renseignent sur l’étalement d’une distribution.
f) Toutes les réponses précédentes sont fausses.
2010-2011 Tutorat UE4 Biostatistiques Séance n° 1 5 / 5
QCM n°15 : Concernant les différents types de variables :
a) La moyenne est utilisée lors de tests statistiques qui étudient des valeurs aussi bien qualitatives
que quantitatives.
b) Une variable quantitative peut être discrète, continue ou ordinale.
c) On peut ordonner les modalités d’une variable qualitative. On obtient alors une variable
quantitative.
d) Lors d’un sondage sur un échantillon de 300 élèves d’un collège de Montpellier, on étudie le temps
passé quotidiennement devant la TV. Les élèves doivent cocher une des trois propositions
suivantes : un peu ; moyen ; beaucoup. La variable étudiée est qualitative nominale.
e) Le sexe est un exemple de variable qualitative nominale. Cependant, cette variable sera dite
binaire, car elle ne peut prendre que 2 valeurs.
f) Toutes les réponses précédentes sont fausses.
QCM n°16 : Généralités :
a) Afin qu’un échantillon soit représentatif de la population, il est au moins indispensable
qu’un tirage au sort aléatoire soit effectué.
b) On calcule la moyenne dans un échantillon tiré au hasard dans une population finie
. inconnue de moyenne µ. On peut estimer
c) On peut comparer la prévalence d’une maladie M entre une population finie connue et un
échantillon tiré au hasard dans cette population.
d) Le calcul du nombre de sujet nécessaire pour la composition d’un échantillon permet de
limiter les biais lors d’une étude statistique.
e) Du moment que l’échantillon est aléatoire, aucune source d’erreur ne peut être introduite.
f) Toutes les réponses précédentes sont fausses.
QCM n°17 : On mesure la glycémie à jeun dans un échantillon de 200 individus tirés au
sort sur l’annuaire téléphonique de l’Hérault.
Soient les individus diabétiques auxquels on associe la valeur 1 de la variable
aléatoire et dont la fréquence dans l’échantillon est P = 5%.
Soient les individus non diabétiques auxquels on associe la valeur 0 de la variable
aléatoire.
a) Les individus non diabétiques représentent 95 % de l’échantillon.
b) La moyenne de l’échantillon est 5%
c) L’espérance dans la population d’où est extrait l’échantillon est de 5%
d) La variance dans la population de l’Hérault est égale à 2,375.10-4
e) Si on avait choisi un échantillon de patients hospitalisés dans le service d’Endocrinologie
du CHRU de Montpellier, la variance dans la population aurait augmenté.
f) Toutes les réponses précédentes sont fausses.
QCM n°18 : On recueille dans un service de Neurologie spécialisé dans les troubles du
sommeil, le nombre d’heures de sommeil de tous les patients venus en consultation le
26 aout 2010.
Patients
1
1
1
1
1
1
1
1
1
1
1
Heures de
sommeil
2h45
3h
3h15
3h45
4h
4h30
4h45
5h
5h30
6h
6h15
a) L’étendue vaut 3,5h.
b) Les deux valeurs extrêmes sont : 2h45 et 6h15
c) L’écart moyen correspond à la moyenne des valeurs absolues des écarts à la moyenne
d) Le 2eme quartile ou médiane vaut 4h30
e) 50% des données se trouvent entre 3h15 et 5h30
f) Toutes les réponses précédentes sont fausses.
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !