Diffrentes mthodes de calcul de triplets pythagoriciens

Eric GILLON Lycée Marlioz 2008-2009
Différentes méthodes de calcul de triplets pythagoriciens
Idée : Utiliser un tableur pour déterminer quelques triplets dans chacun des cas.
La formule de Pythagore :
Soit n est un entier non nul, posons a = 2n + 1, b = 2n² + 2n et c = 2n² + 2n + 1 .
Démontrer qu’un triangle de longueurs des côtés a, b et c est rectangle.
Calculer le triplet pour n = 2 puis n = 3 et vérifiez dans ces cas que les trois nombres obtenus
sont les longueurs des côtés d’un triangle rectangle.
La formule de Platon :
Soit n est un entier supérieur à 1, on pose a = 2n, b= n² - 1 et c = n² + 1.
Même question que précédemment.
La formule d’Euclide :
Soit q et p sont deux entiers non nuls, q étant supérieur à p et k un autre entier non nul
(servant de coefficient de proportionnalité). On pose a = 2kqp ; b = k(q² - p²) et c = k(q² + p²).
Quel est le triplet obtenu pour q = 3 et p = 2 et k = 1 ? Les trois nombres ainsi obtenus sont-ils
les longueurs d’un triangle rectangle ?
Démontrer qu’un triangle de longueurs des côtés a, b et c est rectangle.
Démonstration de l’exhaustivité :
Soit a, b et c un triplet pythagoricien, donc a² + b² = c². On ne restreint pas la généralité en
recherchant a et c sous la forme a = u - v et c = u + v (u et v entiers et u > v). L'entier b vérifie
alors b2 = c2 - a2, soit b = 2uv . Le produit uv est donc un carré parfait car b est entier !
En décomposant u et v sous forme de produits de facteurs premiers et en regroupant les
facteurs d'exposants pairs, on a : u = p2k et v = q2k
k et k' sont des entiers, produits de facteurs premiers dont l'exposant est 1.
Par conséquent le produit uv ne sera un carré que si les facteurs premiers de k se retrouvent
dans k' et en nombre égal. De même pour k'. Donc k = k' et par conséquent u = kp2, v = kq2.
En conclusion : a = k( - q²) , b = 2kpq , c = k( + q²) , p > q, k arbitraire.
Remarque :
On pourra se demander si l’inégalité triangulaire est vérifiée dans chacun des cas précédents.
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !