6ème
Ch4 : Les triangles
Objectifs
•Connaître les propriétés relatives aux côtés et aux * angles des
triangles suivants : triangle isocèle, triangle équilatéral, triangle
rectangle.
•Utiliser ces propriétés pour reproduire ou construire des figures
simples.
•Construire une figure simple à l’aide d’un logiciel de géométrie
dynamique.
•Construire, à la règle et au compas, un triangle connaissant les
longueurs de ses côtés.
1 Triangles particuliers
a. Triangle équilatéral
Définition (Triangle équilatéral)
Un triangle équilatéral est un triangle dont tous les côtés ont la même mesure.
Chaque angle a pour mesure 60◦.
≀
≀ ≀
A B
C
b. Triangle rectangle
Définition (Triangle rectangle)
Un triangle rectangle est un triangle ayant un angle droit.
A B
C
c. Triangle isocèle
Définition (Triangle isocèle)
Un triangle isocèle est un triangle ayant deux côté de même longueur. Il possède
également deux angles égaux.
A B
C
≀ ≀
2 Construction de triangles
Règle
Pour construire un triangle ABC dont on connaît les longueurs des trois côtés :
– On trace un segment ([AB] par exemple) avec la bonne longueur ;
– on trace le cercle de centre A et de rayon AC ;
– on trace le cercle de centre B et de rayon BC ;
– lorsque les deux cercles se croisent, chaque point d’intersection convient pour C.
Exemple : Construire un triangle ABC tel que AB = 5 cm,AC = 4,2 cm et BC = 3,6 cm.
A B
5A B
4,2
A B
3.6
A B
C
ou
A B
C
1