Page 1 sur 3
20
z
O
G
k
Étude du Thermomètre de Galie.
Cette étude s’articule en trois parties.
Une lecture très attentive de l’ensemble de l’énoncé est nécessaire.
Galileo Galilei, dit Galilée (1564-1642) était un mathématicien, physicien et astronome italien. Célèbre
pour ses travaux sur la chute des corps et pour ses observations célestes, il travailla aussi sur la mesure
de la température. C'est à partir de l'une de ses idées qu'a été confection le thermomètre dit de
Galilée.
Cet exercice vise à comprendre le fonctionnement de ce thermomètre.
Cet objet coratif est constitué d'une colonne remplie d'un liquide incolore et de plusieurs boules
en verre soufflé, lestées par une petite masse métallique.
Le liquide contenu dans la colonne a une masse volumique
(T) qui décroît fortement lorsque la
température augmente. Les boules ont chacune le même volume mais possèdent des masses différentes.
Un petit médaillon indiquant une température est accroché sous chacune d'elles. Chaque boule
possède une masse ajustée de manière précise. Pour un modèle commercial courant, on trouve onze
boules indiquant des températures comprises entre 17 °C et 27 °C.
Dans cet appareil, on peut observer que certaines boules sont situées en bas de la colonne et que
d'autres flottent en haut. La température de la colonne est indiquée par la boule qui se trouve en
équilibre dans le liquide c'est-à-dire par la plus basse des boules situées en haut de la colonne.
1. Principe de fonctionnement :
On cide de construire un thermomètre. On utilise une éprouvette remplie d'une huile de
masse volumique
(T) dans laquelle on place des boules de même volume Vb mais de
masses volumiques différentes. On constate que certaines boules flottent et d'autres coulent. On
s'intéresse dans cette partie à la boule 20 de volume Vb et de masse volumique
20 . On peut
supposer que la masse volumique et le volume de cette boule sont quasiment indépendants de la
temrature contrairement à ceux du liquide dans lequel elle est immergée. La boule 20 est
immobile, en équilibre dans l'huile et sans contact avec les autres boules.
1.1. Faire l’inventaire des forces s'exerçant sur la boule 20. Les représenter sur un schéma sans
souci d'échelle.
1.2.Etablir l’expression littérale de la valeur de ces différentes forces.
1.3. Après avoir énoncé la loi de Newton qui s’applique dans cette situation, montrer que P = Π puis que
20 =
l
1.4. Lorsque la température du liquide s'élève, la boule 20 se met en mouvement. Justifier dans quel sens.
2. Étude du mouvement d'une boule.
On utilise le même liquide que précédemment et on y place une seule boule de masse m et de centre
d'inertie G. Le liquide contenu dans l'éprouvette est à 18 °C, on constate qu'à cette température, la
boule flotte. On chauffe alors légèrement le liquide jusqu'à 20 °C, on plonge à nouveau la boule à
l'intérieur et on constate qu'elle descend le long de lprouvette. On prend pour origine des dates
(t = 0 s) l'instant on a plongé la boule dans le liquide. On modélise la valeur f de la force de
frottement fluide du liquide sur la boule par f = k.v, avec v, la vitesse du centre d'inertie de la boule
et k le coefficient de frottement. On définit un axe Oz dirigé vers le bas, le point O coïncide avec le
centre d'inertie de la boule à l'instant de date t = 0 s.
Page 2 sur 3
Un dispositif adéquat permet de tracer l’évolution de la vitesse v de descente du centre d’inertie G de la boule
en fonction du temps.
Le mouvement du centre dinertie G de la boule peut se décomposer en deux phases :
première phase : Le mouvement du centre d’inertie G est rectiligne accéléré dans leférentiel
terrestre.
2.1. Calculer l’accélération à l’instant t=1s.
2.2. Comment évolue l’accélération au cours de cette première phase (à justifier en parlant de la tangente à
courbe)
2.3.Enoncer la loi de Newton applicable dans cette première phase.
2.4.Choisir, parmi les quatre propositions, le schéma correspondant à la situation étudiée. (Justifier votre
choix)
2.5.Montrer que   
Par souci de clarté, les vecteurs ne sont pas sur la même droite mais légèrement décalés.(
P
étant le vecteur
modélisant le poids,
la poussée d’Archimède et
f
la force de frottement)
schéma 3:
Page 3 sur 3
Deuxme phase : La vitesse de descente du centre d’inertie G de la boule atteint une valeur
limite notée vlim. Le mouvement de son centre d’inertie devient rectiligne uniforme dans le férentiel terrestre.
2.6. Par lecture graphique, donner la valeur expérimentale vlim expérimentale de la vitesse limite.
2.7. Expliquer pourquoi la vitesse du centre d’inertie de la boule n’augmente pas indéfiniment et finit par
atteindre une valeur limite
3. Étude des travaux des forces durant la deuxième phase.
On sire déterminer la valeur f de la force de frottement lors de la deuxme phase puis de retrouver la vitesse limite
vlim. Durant cette étude, la boule descend dans le thermomètre de A vers B d’une hauteur h.
3.1. Calculer le travail du poids
P
entre les points A et B. Est-il moteur ?
3.2. En admettant que
(20°C) = 848 kg.m-3, démontrer que la valeur de la poussée d’Archimède vaut
= 7,65
10 -2 N
3.3. Calculer le travail de la poussée d’Archimède
entre les points A et B. Est-il moteur ?
3.4. Démontrer que la somme des travaux des forces durant cette deuxième phase du mouvement est nulle.
Justifier votre réponse.
3.5. A partir de la relation de la question 3.4., déterminer le travail de la force de frottement
f
entre les
points A et B. Est-il moteur ?
3.6. En déduire la valeur de la force de frottement
f
.
3.7. Calculer la vitesse limite vlim calculée atteinte par la boule puis comparer la valeur calcue à celle donnée
à la question 2.3.
Dones pour l’étude des travaux durant la deuxme phase:
Volume de la boule :
Vb =9,20 cm3
Masse de la boule :
m = 12,0 g
Intensité de la pesanteur:
g = 9,80 N.kg-1
Coefficient de frottement:
k = 3,16 N.s.m-1
Hauteur entre les points A et B :
h = 20,0 cm
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !