2 / 8
c- En utilisant les résultats précédents, compléter le tableau du document réponse
n°1 à remettre avec la copie avec les amplitudes des harmoniques 1, 2 et 3 du
signal MLI. En déduire les valeurs efficaces correspondantes. Comparer les
résultats obtenus avec les valeurs proposées dans le texte.
2- fonctionnement à la résonance.
a- Calculer la capacité du condensateur à mettre en série avec le four de façon à
ce que le circuit RLC ainsi constitué soit à la résonance pour le fondamental de
la tension d’alimentation.
b- Calculer alors l’intensité I1 du fondamental du courant.
c- Calculer la puissance dissipée par effet Joule dans le four par le fondamental
du courant.
3- Etude de l’harmonique 3 du courant
a- Calculer l’impédance de l’ensemble four-condensateur à la fréquence de
l’harmonique 3 de la tension d’alimentation.
b- Calculer alors l’intensité I3 de l’harmonique 3 du courant
c- Peut-on négliger la puissance dissipée par ce courant dans le four ?
II- ETUDE DE L’ONDULEUR
A- Fonctionnement à la résonance
Dans cette partie de l’étude, on s’intéresse à la moitié de l’onduleur qui
fonctionne pendant la demi-période où le courant dans la charge est positif. Un dispositif
électronique, dont un sous-ensemble sera étudié dans la partie III du problème, maintient le
courant dans la charge en phase avec le fondamental de la tension de façon à assurer le
fonctionnement à la résonance.
Tous les semi-conducteurs utilisés seront considérés comme parfaits ( chute de
tension nulle à l’état passant et courant nul à l’état bloqué).
Le courant i dans la charge est sinusoïdal, de fréquence f0 = 200Hz et de valeur
efficace I = 50 A.
Sur la figure n°8 sont représentés les intervalles de conduction de K1 et K3, ainsi
que le courant i sur un intervalle de temps égal à une demi-période.
K1 est fermé pendant toute la durée de la demi- période , tandis que K3 est fermé de 0 à T
16 ,
de T
8 à 3T
8 et de 7T
16 à T
2 .
1- représenter sur la figure n°8 (document réponse n°2 à remettre avec la copie )
les intervalles de conduction de la diode D1, la tension u, le courant is.
2- donner l’équation horaire i = f(t) de i
3- En admettant, ce qui est vérifié, que la forme du courant is pendant la deuxième
demi-période est identique à celle de la demi-période, mettre en place le calcul
de la valeur moyenne du courant fourni par la source E. Pour cela, sans