Proposition de sujet de thèse à l’appui d’une demande de contrat doctoral 2017-2087
Nom, prénom du directeur de l'unité de recherche : Lemichez Emmanuel
Numéro de l'unité de recherche (et établissement de rattachement) : Institut Pasteur
Nom, prénom du responsable de l'équipe d'accueil (EAD) : Lemichez Emmanuel
Nom, prénom du directeur de thèse : Lemichez Emmanuel
Titre du sujet de thèse proposé : Hijacking of cellular biomechanics by invasive bacterial pathogens
(en anglais)
Citer 5 mots clés :Bacterial toxins, E. coli, Rho GTPases, actin cytoskeleton, soft matter physics
(key words)
Candidat pressenti : OUI NON
Contenu scientifique du programme de la thèse (en anglais)
Cell invasion by pathogenic bacteria is a major source of acute or recurrent infections that promote inflammation
and tissue damages (1). Extra-intestinal strains of E. coli are a source of frequent and recurrent infections causing
significant costs in public health. A large number of uropathogenic E. coli (UPEC) of the phylogenic group B2
produce the cytotoxic necrotizing factor-1 CNF1, a toxin that activates the small GTPase Rac1, and express FimH, a
component of type-I fimbriae that hijacks integrin signaling to promote host cell invasion (2, 3). Rac1 belongs to
the Rho GTPase family that controls numerous actin related processes, and is a central target of virulence factors
of numerous invasive pathogens (4). We identified Optineurin, a selective autophagy receptor, as a new partner
of HACE1, a critical player in Rac1 signaling and mechanotransduction, as well as in Rac1-mediated integrin-
dependent invasion of host cells by CNF1-producing bacteria. We also define that OPTN is a regulator of Rac1 and
integrin affinity that is activated by mechanical stretching.
Basic studies are now required to define the interplay of these factors in host cell invasion by UPEC, as well as
define mechanical cues that are withstanding the induction of large deformations of host membranes that
promote bacteria entry into cells.
Based on our groundbreaking findings and through conducting interdisciplinary approaches, we propose to define
the critical function of newly identified components of mechanotransduction controlling Rac1 signaling and the
autophagy machinery in order to unveil their role in the invasion of cells by UPEC (5). Interestingly this shall also
reveal unexpected links between Rac1 signaling and components of the ubiquitin/proteasome and autophagy
degradative machineries.
References:
1. Monack, D. M., et al. 2004. Nat Rev Microbiol. 2:747-765.
2. Eto, M., et al. 2007. PLoS Pathogens. 3:e100.
3. Visvikis, O., et al. 2011. Traffic. 12:579-590.
4. Lemichez, E. and Aktories, K. 2013. Exp Cell Res. 319:2329-2336.
5. Huang, J. and Brumell, J. H. 2014. Nat Rev Microbiol. 12:101-114.
Indiquez les cinq meilleures publications récentes de l’équipe :
° Stefani et al., Ezrin enhances line tension along transcellular tunnel edges via NMIIa driven actomyosin cable formation
Nature Communications 2017 in press
° Andrio E, et al., Identification of cancer-associated missense mutations in hace1 that impair cell growth control and Rac1 ubiquitylation.
Sci Reports 2017 Sci Rep. 2017 7:44779. (doi: 10.1038/srep44779)
° Connan C, et al., Translocation and dissemination to target neurons of botulinum neurotoxin type B in the mouse intestinal wall.
Cell Microbiol. 2016 18:282-301. ( doi: 10.1111/cmi.12502)
° Diabate M, et al., Escherichia coli α-hemolysin counteracts the anti-virulence innate immune response triggered by the Rho GTPase
activating toxin CNF1 during bacteremia.
PLoS Pathog. 2015 11:e1004732. (doi: 10.1371/journal.ppat.1004732)
° Torrino S, et al., The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1.
Dev Cell. 2011 21:959-65. (doi: 10.1016/j.devcel.2011.08.015)