TD de Transfert de Chaleur
1
Faculté des hydrocarbures et de la chimie Groupe: IEX05
Série N° 5: La Conduction
Exercice 1
Considérons un mur plan de 100 mm d'épaisseur et de conductivité thermique k=100
W/m.K le régime permanant est établit avec les températures aux surfaces T1=400 K,
T2= 600 K. Déterminer la densité de flux thermique et le gradient de température
/dT dx
.
Exercice 2
Une distribution de température stationnaire dans un mur unidirectionnel avec une
épaisseur e=500 mm, à la relation T(x)=a+bx2 avec a=200°C b=-2000°C/m2 (x en mètre).
a) Déterminer le taux de production de chaleur 𝑞̇ dans le mur.
b) Déterminer les flux de chaleur aux surfaces.
Exercice 3
Un mur plan est composé d’une couche extérieure en brique de 0.2 m d'épaisseur à une
conductivité thermique k1 =0.72 W/m.K et une couche intérieure en bois à k2 =0.12
W/m.K. la température à la surface intérieur est 20°C et celle de la surface extérieure
0°C. Déterminer la densité de flux thermique et la valeur de la température à l'interface
des deux couches
Exercice 4
Une maison contient un mur composé de trois couches (voir le
schéma)
a- Déterminer l'expression de la résistance thermique totale du mur.
b- calculer le flux de chaleur total traversant le mur
Exercice 5
Une fenêtre spéciale d'une chambre est composée de deux plaques en verre d'épaisseur
de 7 mm qui renferment une couche d'air de 7 mm. La fenêtre sépare une chambre dont
l'air est à 10°C de l'extérieure où règne une température égale à -10°C.
Le coefficient de convection entre l'air et la surface intérieur de la fenêtre est h1=10
W/m2.K et le coefficient de convection au niveau de la surface extérieure h2=80W/m2.K.
Quels est le flux de chaleur sortant de la chambre? S=0.04 m2.
Exercice 6
Considérons le mur sur la figure, déterminer T1, T2, q, et le
pourcentage du flux de chaleur qui traverse le brique, tracer le
diagramme de résistance avant de répondre à la question.
Exercice 7
Un tube cylindrique en acier inoxydable de 2 cm de diamètre
intérieur et de 5 cm de diamètre extérieur est recouvert d’une couche de 3 cm de laine
de verre. Calculer le flux perdu par mètre de longueur si la face interne de l’isolant est à
300°C et sa face externe à 100°C.
Exercice 8
A un tube en acier inox (λ1 = 14 W/m.K) d’un diamètre intérieur de 36 mm et 2 mm
d’épaisseur, transporte un produit pharmaceutique. Le produit pharmaceutique et l’air
ambiant sont aux températures of 6°C and 23°C, respectivement. Les coefficients de
convection interne et externe sont 400 W/m2.K and 6 W/m2.K , respectivement.
1- Quel le flux de chaleur par mètre de longer du tube?
2- Quel le flux de chaleur par mètre de longer si on ajoute une couche extérieure de 10
mm d’épaisseur d’isolation (λ2 =0.050 W/m.K )?
TD de Transfert de Chaleur
2
Exercice 9
La tuyère d'une fusée refroidie au liquide peut-être constituée de cuivre ou d'acier. La
température de la surface externe de la tuyère est maintenue à 150oC alors que les gaz
de combustion sont à 2750oC. Le coefficient de transfert de chaleur à l'intérieur est de
h=20kW/m2 K et le rayon de la tuyère est beaucoup plus grand que son épaisseur.
Si la température maximum admissible des matériaux est de 540oC pour le cuivre et de
980oC pour l'acier, quelle est l'épaisseur maximale possible pour la paroi pour chacun
des matériaux?
Exercice 10
Considérant le mur plan (λ=5 W/m.K) d’épaisseur de 5 cm en
régime permanent avec une source de chaleur uniforme (voir
figure). Dans ces conditions la distribution de la température
est T(x) = a+ bx+ cx2. La surface x= 0 est à la température T0 =
120°C et au contact avec un fluide pour lequel T =20°C and h
=500 W/m2.K la surface x =L est isolée.
1- En appliquant un bilan d’énergie au mur, calculer le tau de génération de chaleur 𝑞̇.
2- Déterminer les coefficients a, b, c en utilisant les conditions aux limites.
Exercice 11
Un mur plan de 10 cm et de conductivité thermique de 25 W/m.K possède une source
interne générant 0.3 MW/m3. Ce mur est isolé sur l'une de ses faces tandis que l'autre
est exposée à un fluide à 92oC (h= 500 W/m2K).
- Déterminer la distribution de la température dans ce mur.
- Quelle est la température maximale atteinte dans le mur?
-Quel est le flux de chaleur quittant ce mur?
Exercice 12
Obtenir l'expression de la distribution de la température T(x) en régime
permanent dans un mur plan (voir figure). Sachant que les températures
des surfaces sont uniformes T1 pour x=0, T2 pour x=L respectivement, en
plus la conductivité thermique dépend de T suivant la loi:
0(1 )bT


Exercice 13
Une bille en acier de 12 mm de diamètre est chauffée à une température de 1150 K. puis
refroidie au contact de l'air ambiant vers une température de 400 K. la température de
l'air est de 325 K et le cœfficient de convection h= 20W/m.K. les propriétés de l'acier
sont: λ= 40 W/m.K, ρ=7800Kg/m3, c=600 J/Kg.K.
1- Peut on utiliser la méthode de la capacité (Calcul du nombre de Biot)?
2- Trouver la fonction d'évolution de la température dans la bille en fonction du temps.
3- Déterminer le temps nécessaire pour le processus de refroidissement.
Exercice 14
Un arbre en acier de 0.1 m de diamètre est chauffé dans un four à gaz chauds de
température de 1200 K. le coefficient de transfert de chaleur par convection h= 100
W/m2.K. Si l'arbre entre à une température de 300 K quel est le temps nécessaire pour
atteindre la température de 800 K.
λ= 63.9 W/m.K, ρ=7832 Kg/m3, c= 434 J/Kg.K.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !