PII MESURES DE DISTANCES DANS L’UNIVERS
I) Incertitude, Précision d’un résultat, notée %ε
Permet de critiquer le résultat d’une expérience (Rexpérience) par rapport au résultat théorique attendu (Rthéorique).
si %ε < 5% : excellent résultat (l’expérience valide la théorie)
si 5% < %ε < 10% : bon résultat (l’expérience est proche de la théorie)
si 10% < %ε : mauvais résultat (l’expérience ne valide pas la théorie)
soit le modèle théorique (formule utilisée) est faux
soit le matériel n’est pas précis
soit l’expérimentateur a mal travaillé
soit …
II) A l’échelle humaine
TP P1 : Mesures de distances par des visées
A RETENIR : reconnaître et appliquer le théorème de Thalès
les formules de trigonométrie ( tan , cos et sin)
III) Objet de petite taille
TP P2 : Evaluation du diamètre d’un cheveu
A RETENIR : savoir construire et utiliser une courbe d’étalonnage
IV) Objet de grande taille
DM ou exercice guidé ou TP : mesure du rayon de la Terre (Erathostène)
A RETENIR :
V) Point commun des methodes de mesures : la propagation de la lumière
1) Principe et représentation
Expérience :
Principe de propagation : dans le vide et dans les milieux transparents et homogènes, la lumière se propage en ligne
droite.
Remarque : La lumière ne se propage pas dans les milieux opaques.
Représentation : le trajet de la lumière est représenté par un rayon lumineux. Le rayon lumineux est modélisé par une
droite orientée dans le sens de propagation de la lumière.
2) Particularité : la diffraction
Expérience :
laser
écran
soleil
Représenter les rayons lumineux
envoyés par les points A et B du soleil à
l’œil.
A
B
laser
Ecran avec fig de
diffraction
Fente ou
cheveu
%ε =
Rthéorique
eRexpérienc - Rthéorique
100
Lorsque la lumière rencontre un objet transparent très fin, elle subit le phénomène de diffraction. Sur l’écran, on ne
retrouve pas de point mais plusieurs tâches. La tâche centrale est la plus brillante.
3) Caractéristiques de la lumière
a) Vitesse de la lumière
La vitesse de la lumière dans le vide est appelé célérité ; elle est notée c.
c = 299 792 458 m.s-1
On prendra une valeur approximative c 3,0.108 m.s-1 = 300 000 km.s-1.
Dans l’air, la lumière se propage pratiquement à la même vitesse que dans le vide.
Remarque : Cette valeur est une valeur limite : aucun objet ne peut aller plus vite que la vitesse de la lumière dans
le vide.
b) Unité de mesure
Dans l’univers, la lumière parcourt d’énormes distances. Pour exprimer ces distances, on a définit une nouvelle
unité de mesure de distances : l’année lumière.
Symbole : a.l 1al = 9.5.1015m savoir convertir al et m
Définition : L’année lumière est la distance parcourue par la lumière, dans le vide, pendant une année.
Valeur d’une année lumière en m et en km :
c = d/t d = c x t d = 3.108 x (365 x 24 x 3600) = 1016 m = 1013 km
c) Message de la lumière
La plus proche étoile du soleil, Proxima du centaure, est à 4,3 a.l (4,3. 1013 km).
Cela signifie que la lumière a mis 4,3 années pour parvenir jusqu’à la terre.
Si cette étoile explosait, la lumière provenant de lexplosion mettrai 4,3 années pour nous parvenir. Lorsque nous
verrions cet événement, la planète aurait disparue depuis 4,3 année.
« Voir loin, c’est voir le passé » à savoir expliquer
EXERCICES du chap PII Données : 1al = 9,5.1015m c = 3,0.108m.s-1
Exercice 1
L’étoile polaire se situe à 4,3.106 milliards de km de la terre. Convertir cette distance en années lumières.
Exercice 2
L’étoile Eta Carina est à presque 7,500.103 al de la terre. Convertir cette distance en m puis en km.
Exercice 3
Le soleil est à 1,50.102 millions de km de la terre. Déterminer la durée mise par la lumière du soleil pour nous parvenir.
Exercice 4
A travers une fenêtre, Antoine observe un arbre qui se situe en
face de sa maison. Il recule jusqu’à ce que l’arbre ait la même
hauteur apparente que la fenêtre.
Il repère sa position et mesure, avec un mètre, la distance d qui
le sépare de la fenêtre (d = 3,36m) puis la hauteur h de la fenêtre
(h=1,16m). Enfin, avec un décamètre, il mesure la distance D
entre la fenêtre et l’arbre (D=1,27.101m).
1) Schématiser la situation en utilisant un ou plusieurs
triangles.
2) Déterminer la hauteur H de l’arbre en mètres.
3) Justifier le nombre de chiffres significatifs de votre
résultats.
Exercice 5
Zoé voyage à Paris et admire la tour Eiffel. Elle souhaite estimer sa
hauteur h. Pour cela, elle prend la règle et la tient verticalement
bras tendu et vise la tour. La règle est à une distance
l’= 6,0.101cm de son œil. En alignant le zéro de la règle avec le
pied de la tour, elle constate que le sommet s’aligne avec la
graduation h’ = 3,49.101cm. Elle se trouve à l = 5,5.10-1km de la
tour Eiffel.
1) Convertir toutes les longueurs en m.
2) Schématiser la situation en utilisant un ou plusieurs
triangles.
3) Déterminer la hauteur h de la tour Eiffel.
4) Justifier le nombre de chiffres significatifs de votre résultats
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !