Subject : Image analysis and data mining for histopathology

Subject : Image analysis and data mining for histopathology : analyzing spatial
heterogeneity in lung cancer tissue sections
Sujet : Analyse d’images et fouilles de données en histopathologie : analyse de
l’hétérogénéité spatiale dans des coupes tumorales de cancer du poumon
La recherche sur le cancer s’est focalisée depuis de nombreuses années sur l’analyse du génome
et des caractéristiques des cellules tumorales, en particulier afin d’identifier des marqueurs
prédictifs du devenir des patients et de l’efficacité des traitements. Cependant, les cancers sont
également constitués d’autres populations de cellules constituant le
microenvironnement tumoral
,
en particulier de cellules du système immunitaire qui jouent un rôle majeur dans le devenir des
patients et peuvent être ciblées par de nouveaux traitements. La présence et la disposition
spatiale de ces différentes populations de cellules au sein du tissu tumoral représentent des
marqueurs importants pour le pronostic des patients dans la plupart des types de tumeurs. Une
analyse quantitative et objective, à l’aide d’algorithmes d’analyse d’images, de statistique spatiale
et de
data mining
, constitue un champ d’investigation important en recherche contre le cancer.
L'objectif de ce travail est d'identifier des descripteurs de l'hétérogénéité spatiale, pertinents
biologiquement et médicalement, à partir d'images microscopiques de marquages identifiant
plusieurs populations de cellules du microenvironnement tumoral dans des échantillons de cancer
du poumon humains.
Nous proposons un stage de 6 mois, niveau M2. Le matériel d'étude sera des images
microscopiques acquises à forte résolution (lames virtuelles) de la totalité de coupes
tumorales provenant de patients pris en charge à Gustave Roussy et sur lesquelles des
marquages ont été réalisés afin de mettre en évidence différentes populations de cellules puis
détectés par analyse d'images. L’objectif est donc de trouver des descripteurs qui caractérisent
l’organisation spatiale de ces populations cellulaires. Pour cela, plusieurs approches sont
envisageables, basées soit sur la statistique spatiale des cellules détectées, soit sur une
caractérisation de la texture et de la combinaison de marqueurs (sans détection de cellules). Ces
descripteurs vont être croisés par la suite avec des variables cliniques
de suivi des patients (récidive, survie…). Leur pertinence pourra ensuite être évaluée avec des
techniques d’apprentissage automatique et de réduction de dimensions.
Ce stage est proposé en collaboration entre Mines ParisTech et Gustave Roussy, centre européen
de lutte contre le cancer.
Le candidat devra avoir une formation en mathématiques appliquées, physique ou informatique,
idéalement avec une expérience en analyse d’images et/ou apprentissage automatique et avoir
un fort intérêt pour la biologie et/ou la médecine.
Supervision :
- Mines ParisTech : Thomas Walter (thomas.walter@mines-paristech.fr)
- Institut Gustave Roussy : Julien Adam (Julien.ADAM @gustaveroussy.fr),
Nicolas Signolle (Nicolas.SIGNOLLE@gustaveroussy.fr)
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !