TP de Physique 1 - Enseignement des Sciences Physiques

publicité
Terminale S
TP 5_L’effet Doppler
L’EFFET DOPPLER
Objectifs :
- Mettre en œuvre une démarche expérimentale : usage des TICE (traitement de signal).
- Repérer des informations spécifiques (fondamental et harmoniques).
- Mettre en œuvre une démarche expérimentale pour mesurer une vitesse avec l’effet Doppler.
- Exploiter l’expression du décalage Doppler dans le cas des faibles vitesses.
Comment mesurer la vitesse d’une moto ?
I.
Qu’est-ce que l’effet
Doppler ?
Échelle de fréquence des sons
On observe une moto se
rapprochant puis s'éloignant
de l'observateur (voir vidéo).
On remarque que le son est
plus aigu quand la moto
s'approche puis plus grave
quand la moto s'éloigne.
Donc la fréquence est plus
grande quand la moto
s'approche et plus petite
quand la moto s'éloigne.
Extrait sonore du son perçu par l’observateur
U (V)
Repères sur le signal
La moto s’approche… …passe devant l’observateur……………… puis s’éloigne.
t (s)
Zones à étudier
On dispose d’une bande sonore d’une moto se déplaçant sur une route. Le moteur de la moto à l’arrêt émet
un son complexe dont la fréquence du fondamental est fS. La moto se déplace à la vitesse Vs par rapport à un
observateur fixe. La célérité du son dans l’air est v = 340 m.s-1.
Quand la moto se déplace, l’observateur perçoit une fréquence différente selon si la moto se rapproche ou s’éloigne
de lui :
- fréquence perçue par l’observateur au bord de la route pendant l’approche :
(
)
(1)
- fréquence perçue par le récepteur au bord de la route pendant l’éloignement :
(
)
(2)
Les fréquences f1 et f2 sont déterminées par des mesures à l’aide d’instruments. fS la fréquence du son de la
moto immobile est inconnue. La vitesse VS de la moto a pour expression :
(
)
(3)
(3)
Le motocycliste respecte-t-il la limitation de vitesse
sur une route de campagne classique ?
Pour répondre à cette question, on pourra utiliser les logiciels Regressi et Regavi comme dans le TP précédent sur
l’acoustique musicale.
Sur votre compte-rendu, décrire précisément :
- la description de la démarche expérimentale,
- les résultats obtenus (reproduction des spectres en fréquence),
- votre conclusion.
Bonus : Si on s’ennuie en toute fin de TP, on pourra chercher à justifier l’expression (3) d’après les informations fournies.
M.Meyniel
1/2
Terminale S
II.
TP 5_L’effet Doppler
Comment mesurer la vitesse radiale d’une étoile ?
Document 0 :
http://www.jf-noblet.fr/doppler/tp213.htm
Document 1 :
En appliquant l’effet Doppler sonore à la lumière, Christian Doppler (1803-1853), mathématicien et physicien
autrichien, suggère que la couleur des étoiles est une conséquence de leur mouvement par rapport à la Terre. Le physicien et
astronome français Hippolyte Fizeau (1819-1896) démontre en 1848 que la vitesse des étoiles est trop faible par rapport à
celle de la lumière pour que cet effet soit observable. Il conclut cependant que les raies d’absorption d’un élément chimique
sur le spectre d’une étoile en mouvement par rapport à la Terre doivent être décalées par rapport à leur position sur le
spectre du soleil. La mesure de ce décalage permettrait alors à remonter à la vitesse de l’étoile dans la direction de
l’observation : c’est la vitesse radiale.
𝑉𝑡 : Composante
tangentielle de la
vitesse réelle
Etoile
distante
Observateur
𝑉𝑟é𝑒𝑙𝑙𝑒 : Vitesse réelle
𝑉𝑟 : Composante radiale de la
vitesse réelle : vue dans la
direction de l’observateur
Document 2 :
Cette prévision est confirmée en 1868 par l’astronome britannique William Huggins (1824-1910), qui montre, en
mesurant le décalage des raies de l’hydrogène, que l’étoile Sirius s’éloigne de la Terre à une vitesse de 46 km.s-1.
L’effet Doppler-Fizeau s’est plus récemment illustré dans la détection des exoplanètes, les planètes hors du système solaire.
En effet, la présence d’une planète massive autour de l’étoile provoque un léger mouvement périodique de l’étoile, que l’on
peut mesurer par cette méthode. La période de ce mouvement permet d’évaluer la masse de la planète et de conclure sur le
type de planète détectée. En effet, le déplacement des raies sombres dans le spectre de l’étoile est la signature du mouvement
de la planète et de l’étoile autour de leur centre de rotation.
La détermination de la vitesse radiale par le décalage Doppler permet de tracer la courbe de vitesse radiale et ainsi de
déterminer la présence d’une grosse planète ainsi que sa période de révolution.
Le décalage Doppler-Fizeau en longueur d’onde est donné par :
avec
0 : longueur d’onde d’une raie de référence (dans le spectre du sodium) dans le spectre de
raie
d’absorption d’une étoile fixe (Soleil),
’ : longueur d’onde de la raie de référence dans le spectre de raie d’absorption d’une étoile mobile,
: ’ - 0 ,
v : vitesse radiale de l’étoile par rapport à un observateur sur Terre,
c : célérité de la lumière dans le vide.
1. D’où proviennent les raies d’absorption sur le spectre d’une étoile ?
 Se connecter sur :
http://espacelycee.editions-bordas.fr/enseignant/anim/partie_1_sequence_4_activite_6_effet_doppler_fizeau
 Puis choisir le module « détection des exoplanètes », lire les informations données et cliquer sur Application.
On considère la planète 51 Pegasi b
 Déplacer le curseur et déterminer avec précision la longueur d’onde 0 dans le spectre d’absorption du Soleil.
 Noter cette valeur dans le tableur (fichier doppler.xls).
 Pour chaque spectre d’absorption de l’étoile, repérer la longueur d’onde ’ de la raie et compléter le tableau.
 A l’aide du tableur, calculer
= ’ -  0 .
 A l’aide du tableur, calculer la vitesse radiale de l’étoile v (la vitesse radiale d'un objet est la composante de sa
vitesse qui est mesurée dans la direction de la ligne de visée de l'observateur).
2. Interpréter l’allure du tracé de v = f (t).
3. Déterminer la période T du mouvement de la planète.
4. Sachant que le rayon de rotation de l’étoile avoisine les 590.106 m, en déduire la masse M de l’étoile.
On pourra utiliser la troisième loi de Képler :
M.Meyniel
avec G la constante de gravitation universelle G = 6,67.10-11 USI
2/2
Terminale S
TP 5_L’effet Doppler
Compte-rendu de l’effet Doppler
Comment mesurer de la vitesse d’une moto ?
I.
 Protocole expérimental :
 Ouverture de l’enregistrement sonore moto avec le logiciel Régavi.
 On sélectionne le début de l’enregistrement (avant le repère indiqué) et l’on transfert vers le logiciel Régressi la
sélection.
 En cliquant sur l’onglet Fourier, on fait apparaître le spectre en fréquence correspondant.
 On utilise le réticule (icône Curseur) afin de déterminer la fréquence fondamentale f1 du signal. Un zoom (icône
loupe) amène plus de précision sur la mesure.
 On procède de la même façon avec la fin de l’enregistrement afin d’obtenir la fréquence f2.
 Résultats :
Les valeurs trouvées sont :
f1 = 236 Hz
&
f2 = 210 Hz
amplitude (mV)
f1 = 236 Hz
La formule (3) permet d’obtenir la vitesse de la moto dans un
référentiel terrestre fixe :
708 Hz
472 Hz
[
f
]
 Conclusion :
Le motard respecte la limitation de vitesse puisque sa vitesse est à 90 km/h, la limite imposée.
Rq :
* Bien prendre un court intervalle de temps en début et fin pour être plus précis car on considère un grand intervalle de
temps entre le début et la fin ce qui amène plus de précision.
* Les sons ne sont pas purs puisque les enregistrements sont non sinusoïdaux et les spectres en fréquences présentent
plusieurs harmoniques.
On effectue le rapport [f1 – f2 / f1 + f2] à l’aide des formules (1) et (2) pour simplifier fS et on retrouve la formule (3) :
Bonus :
II.
(
)
(
)
(
)
(
(
)
(
)
(
)
(
)
)
(
)
(
)
(
(
)
)
(
(
)
)
Comment mesurer la vitesse radiale d’une étoile ?
1. Les raies noires proviennent des radiations absorbées par les gaz présents sur le trajet de la lumière =>
atmosphère de l’étoile et/ou de la Terre.
2. On retrouve une courbe sinusoïdale comme le mettait en avant la démonstration sur le site sous-entendant que
l’étoile se rapproche puis s’éloigne périodiquement de la Terre.
Une exoplanète doit donc graviter autour d’elle !!!
3. T = 4,2 j
4. On peut montrer que le rayon de rotation a une valeur proche de rPég. = 590.106 m.
En déduire la masse de l’étoile à l’aide de la troisième loi de Képler :
T² / r3 = 4.π²/G.M
E.L : M = 4.π².r3/G.T² = 4.π².(590.106)3 / (6,67.10-11 × (4,2×24×60×60)²) = 9,2.1026 kg
« Unité / CS /Arrondi »
M.Meyniel
3/2
Téléchargement