Retrouver les équations horaires et celles des trajectoires à partir du théorème du centre d’inertie dans le
cas de la pesanteur ou dans le cas d'un champ électrique uniforme.
Mouvements circulaires.
Connaître les caractéristiques du vecteur vitesse et du vecteur accélération d'une particule en mouvement
circulaire uniforme.
Démontrer que, dans l'approximation des trajectoires circulaires, le mouvement d'un satellite ou d'une
planète est uniforme. Retrouver l'expression de sa vitesse, de sa période. En déduire la 3e loi de Képler.
Connaître l'expression de la force subie par une particule chargée en mouvement dans un champ
magnétique uniforme (force de Lorentz).
Démontrer que le mouvement d'une particule dans un champ magnétique uniforme perpendiculaire à sa
vitesse initiale est plan, uniforme et circulaire.
Justifier qu'un champ magnétique uniforme, contrairement à un champ électrique, ne peut faire varier
l'énergie cinétique d'une particule chargée.
II ] Systèmes oscillants.
1°) Généralités.
Définir, mesurer ou calculer une période, une fréquence, une amplitude.
Savoir qu'un oscillateur (mécanique ou électrique) non amorti évolue à énergie constante.
Savoir qu'un oscillateur amorti dissipe une énergie vers le milieu extérieur.
Savoir que tout système d'entretien des oscillations fournit l'énergie dissipée par l'oscillateur.
Reconnaître, à partir des courbes, la nature du régime : périodique, périodique amorti, critique et apériodique.
2°) Oscillateurs mécaniques. En régime libre.
Donner l'expression d'une énergie potentielle élastique.
Savoir qu'au cours des oscillations d'un oscillateur mécanique non amorti, il y a transformation continuelle
d'énergie cinétique en énergie potentielle élastique et inversement.
Établir l'équation différentielle d'un oscillateur mécanique non amorti et, dans le cas d'un oscillateur
sinusoïdal, retrouver l'expression de la période.
En régime forcé.
Déterminer sur la courbe de résonance la bande passante à 3 dB.
3°) Oscillateurs électriques.
Savoir utiliser un oscilloscope pour visualiser une tension aux bornes d'un dipôle, une intensité.
Pour un condensateur.
Expliquer le comportement d'un condensateur.
Savoir qu'un condensateur qui se charge sous une tension U est un récepteur qui stocke l'énergie 1/2 C.U2.
Connaître les relations algébriques reliant les grandeurs intensité, tension aux bornes et charge d'une
armature.
Déterminer la constante de temps qui intervient dans la charge ou la décharge d'un dipôle (R, C) soumis
à un échelon de tension. Pour une bobine.
Savoir qu'une bobine s'oppose aux variations de courant du circuit où elle se trouve.
Connaître la relation algébrique reliant intensité et tension à ses bornes : e = - L.di/dt.
Savoir qu'une bobine, qui joue le rôle d'un récepteur, stocke l'énergie : 1/2 L i2.
Déterminer la constante de temps qui intervient dans la réponse d'un dipôle (R, L) soumis à un échelon
de tension. En régime libre.
Savoir qu'au cours d'oscillations libres d'un dipôle (R, L, C) il y a échange d'énergie entre la bobine et le
condensateur et perte d'énergie par effet Joule.
Connaître la période des oscillations libres du dipôle (L, C).
Établir l'équation différentielle d'un oscillateur électrique non amorti et, dans le cas d'un oscillateur
sinusoïdal, retrouver l'expression de la période.
Décrire un exemple de dispositif permettant de compenser l'amortissement des oscillations (oscillations
entretenues). En régime forcé.
Savoir qu'un dipôle (R, L, C) en oscillations forcées est traversé par un courant dont la période est celle
imposée par le générateur et non celle des oscillations libres.
Réaliser un montage permettant de relever une courbe de résonance.
Donner les conditions de résonance (fréquence du générateur = fréquence propre, déphasage nul,
maximum d'intensité, risque de surtension aux bornes du condensateur).
Définir l'impédance et savoir que : R ≤ Z (égalité à la résonance).
Déterminer sur la courbe de résonance la bande passante à 3 dB, calculer le facteur de qualité.
Savoir que la bande passante est d'autant plus étroite que la résistance est plus faible.