C. R. Acad. Sci. Paris, Ser. I 336 (2003) 661–666
Probability Theory
A Bismut type formula for the Hessian of heat semigroups
Une formule de Bismut pour la hessienne d’un semigroupe
de la chaleur
Marc Arnaudona, Holger Plankb, Anton Thalmaierc,
aDépartement de mathématiques, Université de Poitiers, Téléport 2, BP 30179, 86962 Futuroscope Chasseneuil cedex, France
bUniversität Regensburg, NWF I, Mathematik, 93040 Regensburg, Germany
cUniversité d’Evry, laboratoire d’analyse et probabilité, département de mathématiques,
bd François Mitterrand, 91025 Evry cedex, France
Received 3 March 2003; accepted 4 March 2003
Presented by Paul Malliavin
Abstract
We obtain an intrinsic version of a Bismut type formula for the Hessian of heat semigroups, resp. harmonic functions,
by computing second order directional derivatives of families of martingales, along with filtering of redundant noise. As
applications we provide a Hessian estimate in the general case as well as a slightly improved one in the radially symmetric
situation. To cite this article: M. Arnaudon et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).
2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé
On écrit une formule de Bismut intrinsèque pour la hessienne d’un semigroupe de la chaleur ou d’une fonction harmonique
sur une variété, en calculant des dérivées secondes directionnelles de familles de martingales, et en filtrant ensuite le bruit
superflu. Cela nous permet d’obtenir des estimées de la hessienne dans un cadre très général. Avec des hypothèses de symétrie
radiale de la variété, on améliore encore ces estimées. Pour citer cet article:M. Arnaudon et al., C. R. Acad. Sci. Paris, Ser. I
336 (2003).
2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
Version française abrégée
Soit Mune variété de dimension n, munie d’une connexion . On considère la solution sur Md’une EDS
d’Itô non-dégénérée dX(x) =A(X(x)) dZ, X0(x) =x, AΓ(Hom(Rm,TM)) et Zest un mouvement
brownien dans Rm. On désigne par Ws:TxMTXsMle transport parallèle déformé le long des trajectoires de
X.(x). On choisit deux ouverts relativement compacts D1et D2de Mtels que xD1,
D1D2,
D2= M. Pour
0<t
1<t
2t, on définit les temps d’arrêt σ:= inf{s0: Xs(x) /D1}∧t1et τ:= inf{s0: Xs(x) /D2}∧t2.
*Corresponding author.
E-mail addresses: [email protected].fr (M. Arnaudon), holger.plank@d.fine.de (H. Plank),
anton.thalmaier@maths.univ-evry.fr (A. Thalmaier).
1631-073X/03/$ see front matter 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
doi:10.1016/S1631-073X(03)00123-7
662 M. Arnaudon et al. / C. R. Acad. Sci. Paris, Ser. I 336 (2003) 661–666
Notre résultat principal est le suivant.
Théorème 0.1. Soit satisfaisant la conditionde Le Jan–Watanabe et Fune fonction harmonique sur Mau sens
F(s,X
s(x)),s0, est une martingale locale pour tout xM. Posant Fs(x) =F(s,x), on a la formule (8)
ci-dessous, où K, L sont adaptés par rapport à FX(x),dénergieL2finie, vérifiant Ks=vpour sσ, Ks=0
pour sτ, L0=wet Ls=0pour sσ.
On s’intéresse essentiellement aux deux exemples suivants. (1) (cas elliptique) Fs(x) =F(x) Fest L-
harmonique sur M; et (2) (cas parabolique) Fs(x) =(Ptsf )(x) fest mesurable bornée sur M.IciPtf(x)=
E[f(X
t(x))1{t<ζ(x)}]est le semi-groupe minimal associé au générateur L=1
2M+V=1
2n
i=1(A(·)ei)2,où
V=tr(AA),etζ(x) est le temps de vie de X.(x).
Le Théorème 0.1 permet d’obtenir des estimées de la hessienne de F0.
Théorème 0.2. Avec les hypothèses du Théorème 0.1,ona
|HessxF0|≡ sup
vTxM,|v|=1HessxF0(v, v)CHesssup
D2|Ft|∨ sup
[0,t∂D2|F|,
où la constante CHess est définie en (10), ou au Corollaire 3.2.
Notre dernière application concerne les fonctions harmoniques dans les variétés possédant une symétrie
sphérique par rapport à un point.
Corollaire 0.3. On suppose que Ma une symétrie sphérique par rapport à un point x. Soit uune fonction
harmonique définie sur M. Au point x, on a les estimées |gradxu|Cgrad(r)u(x) et |Hessxu|CHess(r)u(x),
CHess CHess(r) est définie au Corollaire 3.2(pour t>0arbitraire)et Cgrad(r) est définie en (13).
1. The basic formula
Let Mbe a n-dimensional differentiable manifold endowed with a torsionfree linear connection .LetX(x) be
denedassolutiontotheItôSDEonM,
dX(x) =AX(x)dZ, X0(x) =x, (1)
where AΓ(Hom(Rm,TM)) and Zis BM(Rm). We assume that SDE (1) is non-degenerate (elliptic) in the
sense that A(x) :RmTxMis surjective for each xM. Then there exists a Riemannian metric on TM such that
A(x) :TxMRmis an isometric embedding, i.e., A(x)A(x) =idTxMfor each xM.
Let F:[0,tMMbe a space-time harmonicfunction in the sense that F(s,X
s(x)), s 0, is a continuous
local martingale for any xM. Write Fs(x) =F(s,x). We have mainly two examples in mind: (1) (Elliptic
case) Fs(x) =F(x) where Fis L-harmonic on M; and (2) (Parabolic case) Fs(x) =(Ptsf )(x) where fis
bounded measurable on M. Herein Ptf(x)=E[f(X
t(x))1{t<ζ(x)}]is the minimal heat semigroup with respect to
the generator L=1
2n
i=1(A(·)ei)2=1
2M+Vwhere V=tr(AA),andζ(x) denotes the lifetime of X.(x).
We fix xM. Denoting by Ws:TxMTXsMthe damped transport along the paths of X.(x), cf. [5], p. 295,
or [7] (1.5), we have the local martingale (cf. [1], Lemma 1):
Ns:=(dFs)Xs(x)WsLsFsXs(x)s
0Wr˙
Lr,A
Xr(x)dZr,(2)
where Lsmay be any adapted finite energy process with paths in the Cameron–Martin space H([0,t],T
xM)
such that L0=wTxMand Lσ+.=0 for some stopping time 0 <σ <ζ(x)t. We write Ls=
w+s
0W1
rA(Xr(x))rdrwith sL2
loc(Z). Note that, invoking the decomposition Rm=kerA(Xr(x))
M. Arnaudon et al. / C. R. Acad. Sci. Paris, Ser. I 336 (2003) 661–666 663
kerA(Xr(x)), we may assume that already rkerA(Xr(x))a.s. Let XsTX
sdenote the differential of
the map xXs(x). Computing the covariant derivative of Nsin direction vTxMyields the local martingale:
vNs=∇dFs(Xsv, WsLs)+(dFs)Xs(x)Ws(v, Ls)(dFs)Xs(x)Xsv
s
0Wr˙
Lr,A
Xr(x)dZr
FsXs(x)s
0Wr(v, ˙
Lr), AXr(x)dZrFsXs(x)s
0Wr˙
Lr,AXrvdZr.
Let now Ksbe another adapted finite energy process with paths in H([0,t],T
xM) such that K|[0]≡vand
K|[τ,t]≡0whereτis a stopping time such that σ<τζ(x) t. Exploiting the local martingale property of
N
s:=(dFs)Xs(x)XsKsFs(Xs(x)) s
0Xr˙
Kr,A(X
r(x)) dZr, we get the local martingale:
ns=∇dFs(Xsv, WsLs)+(dFs)Xs(x)Ws(v, Ls)
FsXs(x)s
0Wr(v, ˙
Lr), AXr(x)dZrFsXs(x)s
0Wr˙
Lr,A(Xrv) dZr
(dFs)Xs(x)XsKsFsXs(x)s
0Xr˙
Kr,A
Xr(x)dZrs
0Wr˙
Lr,A
Xr(x)dZr.
Note that nsis non-intrinsic in the sense that it is adapted to the filtration (FZ
s)generated by Z, whereas Nsitself
is (FX(x)
s)-adapted (cf. [3]). However, nsis a good candidate for filtering out redundant noise, since all terms on
the r.h.s. depend linearly on just one factor that is non-measurable with respect to (FX(x)
s).
Lemma 1.1. Let K,L be bounded adapted finite energy processes with paths in H([0,t],T
xM) such that
K|[0]≡vand K|[τ,t]≡0,resp.,L0=w,L|[σ, t]≡0,where0 ζ(x)t. Assuming that (ns)0st
is a true martingale, by comparing the expectation at 0and t, the following formula results:
dF0(v, w) =−EFσXσ(x)σ
0Wr(v, ˙
Lr), AXr(x)dZrEFσXσ(x)σ
0Wr˙
Lr,A(Xrv) dZr
+EFτXτ(x)σ
0Wr˙
Lr,A
Xr(x)dZrτ
σXr˙
Kr,A
Xr(x)dZr.(3)
Remark 1. If one starts from the non-intrinsic equivalentof Ns(with Wsreplaced by Xs)andtakesσ=t/2, τ=t
in the non-explosive situation, the special choice of linearly decaying processes Lsand Ksprovides the result in
[4], Theorem 3.1, if all martingale assumptions hold true (e.g., for Mcompact).
Remark 2. Formula (3) relies on the fact that certain local martingales are indeed true martingales. It is easy to
see that this can always be achieved by a proper choice of the stopping times σand τ. For instance, given xM,
we may fix open, relatively compact subsets D1,D
2of Msuch that xD1,
D1D2,
D2= M. Then, for
0<t
1<t
2t, the stopping times σ:= inf{s0: Xs(x) /D1}∧t1and τ:=inf{s0: Xs(x) /D2}∧t2will do
it, by the fact that all coefficients are bounded on
D1,resp.
D2.
2. Filtering out noise
From now on we assume in addition that (A, )satisfies the Le Jan–Watanabe condition (see [3]), which in
particular means that trAA=0. In the case of a gradient Brownian system, we may use the Levi-Civita
connection. Then from the covariant SDE DT X =∇
TXAdZ1
2R(T X,dX) dXfor the derivative process of X,
664 M. Arnaudon et al. / C. R. Acad. Sci. Paris, Ser. I 336 (2003) 661–666
where D=0,.d1
0,. with 0,. parallel transport in TM along X(x), we deduce that
DT X dX=tr(TXAA) dt=0andTXdXdX=tr(TXAA) dt=0.(4)
An immediate consequence is the vanishing of
EFσXσ(x)σ
0Wr˙
Lr,A(Xrv) dZr=Eσ
0dFrXr(x)Wr˙
Lr,dXr⊗∇TX
rvdXr.
The next step is to make the remaining part of (3) intrinsic. To this end we start from the following general
commutation formula ([2], Theorem 4.5):
DW=∇DW +RdX, T XW+R(dX, T X)DW +1
2R(dX, dX, T X)W +1
2R(dX, DT X)W.
Eq. (4), along with the fact that dXDW =0, cancels out the third and the last term on the r.h.s. To calculate
the first term we differentiate DW(w) =−1
2R(W(w),dX) dXin the direction of vwhere we use the second part
of (4). Substituting in the commutation formula gives
DW(v,w) =RdX, T X(v)W(w) 1
2RT X(v), W (w), dXdX
1
2RW(v,w),dXdX+1
2RdX, dX, T X(v)W(w). (5)
But Itô’s product formula provides Wd(W 1W)=Wd(W 10,.)1
0,. W+0,. d(1
0,. W)=1
2R(W,dX)
dX+DW, which combined with Eq. (5) gives
WdW1W=RdX, T XW1
2Ric(T X, W ) 1
2dR(T X)W, (6)
where Ric(w) =Ric(w, ·)and dR(w) =−tr.R(·,w). We write
W=0,.E[1
0,. W|FX(x)]for the
covariant conditional expectation of Wwith respect to FX(x). Then filtering redundant noise from Eq. (6) and
integrating with respect to time leads to
W1
r
Wr=
r
0
W1RdX, W W1
2Ric(W, W ) ds1
2dR(W)W ds.(7)
Filtering out noise, i.e., taking conditional expectation with respect to FX(x) on the r.h.s. of (3) and using (7),
we obtain the following intrinsic stochastic representation formula for the Hessian of F0.
Theorem 2.1. Let satisfy the Le Jan–Watanabe condition and Fbe a space–time harmonic function on Min
the sense that F(s,X
s(x)), s 0, is a local martingale for any xM. Writing Fs(x) =F(s,x), and choosing
stopping times σ, τ according to Remark 2, we have
(dF0)(v, w) =EFσXσ(x)
σ
0Wr
r
0
W1
sRdXs,W
svWs˙
Lr,dXr(x)
+1
2
σ
0Wr
r
0
W1
sRic+dRWsv,Ws˙
Lrds,dXr(x)
+EFτXτ(x)
σ
0Wr˙
Lr,dXr(x)τ
σWr˙
Kr,dXr(x),(8)
where K, L are FX(x)-adapted L2-finite energy processes such that Ks=vfor sσand Ks=0for sτ,
M. Arnaudon et al. / C. R. Acad. Sci. Paris, Ser. I 336 (2003) 661–666 665
respectively, L0=wand Ls=0for sσ.
Remark 3. If Fs=Ptsf,wherefis bounded measurable, denotes the minimalheat semigroup on Mwith respect
to L=1
2, the Markov property Ptτf(X
τ(x)) =E[Ft(Xt(x))1{t<ζ(x)}|FX(x)
τ]allows us to replace Fτ(Xτ(x))
(the same for σ) in the r.h.s. of (8) by f(X
t(x))1{t<ζ(x)}.
Remark 4. If Mis Ricci parallel, i.e., Ric 0, an easy argumentbased on the second Bianchi identity shows that
also dR0, which cancels out the second line of (8). Moreover, the damped parallel transport in this particular
case reads as Ws=0,s exp(sRic
x/2).
Since Hessx(logg)(v, w) =Hessxg(v,w)/g(x) −gradxg, vgradxg, w/g2(x), desintegrating with respect
to the volume measure leads to the following formula for the Hessian of the logarithmic heat kernel:
Corollary 2.2. Let p(t,x,y) be the smooth heat kernel on ]0,∞[× M×Mto the minimal heat semigroup Ptf.
Defining I1
σ=σ
0Wr˙
Lr,dXr,I2
τ=τ
σWr˙
Kr,dXr, and denoting by Jσthe term in curly brackets in the
r.h.s. of (8), we have for yMthe formula:
Hessxlogp(t, ·,y)
(v, w) =EJσ+I1
σI2
τ|Xt(x) =yEI1
σ|Xt(x) =yEI2
τ|Xt(x) =y.
3. Hessian estimates
Theorem 3.1. Let n=dimM2and consider open regular domains D1,D
2and stopping times σ, τ as in
Remark 2(where t1=t/2and t2=t). Moreover fix fC2(
D1)such that 0<f|D11/2and f|∂D1=0,
as well as ˜
fC2(
D2)such that 0<˜
f|D21/2, being constant on D1and ˜
f|∂D2=0.Fort>0let
F:[0,tMRbe a function which is space–time harmonic on [0,t
D2. We introduce curvature bounds on
D1as there are
C1:= sup
yD, wTyM, |w|=1Ric+dR(w, w);C2:= sup
yD, w,wTyM, |w|=|w|=1R(w,w)w;
in addition C4will be the upper constant in the Burkholder–Davis–Gundyinequality for p=4. Furthermore, let k
and Kbe constants, 2k= K, such that
kinf
yD2,wTyM, |w|=1Ric(w, w) sup
yD1,wTyM,|w|=1Ric(w, w) K. (9)
Then we have
|HessxF0|≡ sup
vTxM,|v|=1HessxF0(v, v)CHesssup
D2|Ft|∨ sup
[0,t∂D2|F|,with
CHess := c(f )
f(x)
1ec(f )t C1
|K2k|+C2C1/4
4n
|K2k|+(1ekt/4)˜c( ˜
f)
˜
f(x)
1e−˜c( ˜
f)t ,
(10)
where the constants c(f ),˜c( ˜
f) depend on f(resp. ˜
f), its derivatives and k, K, and may be chosen as c(f ) =
supD1(kf 2+5|gradf|2ff)
++(K 2k)+supD1f2,resp.˜c( ˜
f)=supD2(k˜
f2+3|grad ˜
f|2˜
f ˜
f)
+.
Proof. Since FX(x) is a martingale on [0], we replace Fσ(Xσ)in (8) by Fτ(Xτ)and estimate |Fτ(Xτ(x))|
supD2|Ft|∨sup[0,t∂D2|F|. Concerning the stochastic integralsin the representation formula,we calculate bounds
of their L2-norms by appropriate choices of Lsand Ksrelated to fand ˜
f.
To this end we construct time changes T(r)=r
0f2(Xs(x)) dsfor rthe first exit time of Xr(x) from D1,
and
T(r)=r
σr˜
f2(Xs(x)) dsfor rthe first exit time from D2. We consider the according (right) inverse
processes τ(r) =inf{s0: T(s) r}and τ(r) =inf{s0:
T(s) r}. Then the upper bound is found by
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !