BB2 2017 correction - Collège Les Marronniers Condrieu

L'épreuve totale est notée sur 40 points, dont 4 sont attribués à la qualité de la présentation, orthographe et
rigueur de rédaction du travail rendu.
Ex 1 /4
Ex 2 /4
Ex 3 /4
Ex 4 /6
Ex 5 /7
Ex 6 /4
Ex 7 /7
Présent.
/4
Total /40
Collège LES MARRONNIERS Mars 2017
CONDRIEU
BREVET BLANC N° 2
EPREUVE DE MATHEMATIQUES
Nom et prénom:
Classe de 3
ème
…….
Exercice 1 / 4 points
Une coopérative collecte le lait dans différentes exploitations agricoles.
Les détails de la collecte du jour ont été saisis dans une feuille de calcul d’un tableur.
1) Une formule doit être saisie dans la cellule B8 pour obtenir la quantité totale de lait collecté. Parmi
les quatre propositions ci-dessous, recopier celle qui convient.
SOMME(B2:B7) SOMME(B2:B8) =SOMME(B2:B7) =SOMME(B2:B8)
2) Calculer la moyenne des quantités de lait collecté dans ces exploitations.
(1250+2130+1070+2260+1600+1740) ÷ 6 = 10 050 ÷ 6 = 1 675 L
3) Quel pourcentage de la collecte provient de l’exploitation « Petite Pas » ? On arrondira le résultat à
l’unité.
2260 ÷ 10 050 22%
Exercice 2 / 4 points
Djamel et Sarah ont un jeu de société : pour y jouer, il faut tirer au hasard des jetons dans un sac.
Tous les jetons ont la même probabilité d’être tirés. Sur chaque jeton un nombre entier est inscrit.
Djamel et Sarah ont commencé une partie. Il reste dans le sac les huit jetons suivants :
1) C’est à Sarah de jouer.
a) Quelle est la probabilité qu’elle tire un jeton « 18 » ? 2/8 = 1/4
b) Quelle est la probabilité qu’elle tire un jeton multiple de 5 ? 3/8
2) Finalement, Sarah a tiré le jeton « 26 » qu’elle garde. C’est au tour de Djamel de jouer.
La probabilité qu’il tire un jeton multiple de 5 est-elle la même que celle trouvée à la question 1.b.?
Justifier. Au tour de Djamel il ne reste plus que 7 jetons, la probabilité est donc différente, elle sera
de 3/7
Exercice 3 / 4 points
Trois triangles équilatéraux identiques sont découpés dans les coins d’un
triangle équilatéral de côté 6 cm.
La somme des périmètres des trois petits triangles est égale au périmètre
de l’hexagone gris restant.
Quelle est la mesure du côté des petits triangles ?
Soit x la longueur d’un côté du petit triangle équilatéral.
Périmètre des trois petits triangle : 3
×
3x
Périmètre de l’héxagone : 3x + 3(6 –2x)
D’où l’équation :
3
×
3x = 3x + 3(6 –2x)
9x = 3x + 18 – 6x
9x = –3x + 18
12x = 18
x = 1,5 cm
La mesure des côtés des petotd triangles est 1,5 cm.
Toute trace de recherche, même non aboutie, figurera sur la copie et sera prise en compte dans la
notation.
Exercice 4 / 6 points
La loi d’Ohm est une loi physique permettant de relier l’intensité du courant électrique traversant un dipôle
électrique à la tension à ses bornes (elle permet de déterminer la valeur d’une résistance). La loi d’Ohm a
été nommée ainsi en l’honneur du physicien allemand Georg Simon Ohm.
La loi d’ohm pour une résistance électrique est donnée par la formule :
U=RI où U est la tension en volts (V), aux bornes de la résistance,
R est la valeur de la résistance en ohms (),
et I est l’intensité en ampères (A), qui la traverse.
1) Pour une résistance de 48×10
2
, on définit une fonction g telle que U = g(I).
a) Donner l’expression de la fonction g et justifier qu’elle est une fonction linéaire.
g(I) = U = RI = 48
×
10
2
×
I d’où g(I) = 48
×
10
2
×
I
g est une foction linéaire acr elle est de la forme g(x) = ax
b) Calculer l’antécédent de 12 et interpréter le résultat obtenu.
12 est l’image donc g(I) = 12
soit 48
×
10
2
×
I = 12
I = 12 ÷ (48
×
10
2
)
I = 2,5
×
10
–3
A
La tension aux bornes de la résistance est de 12 V lorsque qu’une intensité de 2,5
×
10
–3
A la traverse.
2) A la sortie de son TP de physique sur la loi d’Ohm,
Myriam a effectué une série de mesures qu’elle a
obtenues en faisant varier la tension d’un générateur.
Elle a obtenu la courbe ci-contre en plaçant en
abscisses les valeurs de l’intensité I en milliampères
(1A=1 000 mA), et en ordonnées les valeurs
correspondantes de la tension U en Volts. Myriam
doit, pour le prochain cours de physique, trouver la
valeur R de la résistance de ce générateur. Peux-tu
aider Myriam à trouver cette valeur ?
U = RI avec I = 5mA = 0,005 A
2,5 = R × 0,005
R = 2,5 / 0,005
R = 500
Exercice 5 / 7 points
Une commune souhaite aménager des parcours de santé sur son territoire. On fait deux propositions au
conseil municipal, schématisées ci-dessous :
Le parcours ACDA
Le parcours AEFA
Ils souhaitent faire un parcours dont la longueur s’approche le plus possible de 4 km.
Peux-tu les aider à choisir le parcours ? Justifie.
Calcul de la longueur du parcours ACDA :
On sait que le triangle ACD est rectangle en C.
D’après le théorème de Pythagore
DA
2
= CD
2
+ CA
2
DA
2
= 1,4
2
+ 1,05
2
DA
2
= 3,0625
DA = 1,75 km
P
ACDA
= 1,75 + 1,4 + 1,05 = 4,2 km
Calcul de la longueur du parcours AEFA :
On sait que (EF)//( E’F’) et que les points A, E, E’ et A, F, F’ sont alignés,
D’après le théorème de Thalès.
EF
FE
AF
AF
AE '''' ==
EF
4,0
3,1 5,0 =
EF = (0,4×1,3) ÷ 0,5 = 1,04 km
P
AEFA
= 1,6 + 1,04 + 1,3 =
3,94 km
Choix du parcours :
4,2 – 4 = 0,2 km
4 – 3,94 = 0,06 km
Le parcours dont la longueur s’approche le plus possible de 4 km est le parcours AEFA
Attention : la figure proposée au conseil municipal n’est pas à l’échelle, mais les codages et les dimensions
données sont correctes.
Exercice 6 / 4 points
Un aquarium a la forme d’une sphère de 10 cm de rayon, coupée en sa partie haute : c’est une « calotte
sphérique ».
La hauteur totale de l’aquarium est 18 cm.
1) Le volume d’une calotte sphérique est donné par la formule :
)3(
3
2
hrhV ××=
π
r
est le rayon de la sphère et
h
est la hauteur de la calotte
sphérique.
a)
Prouver que la valeur exacte du volume en cm
3
de l’aquarium
est
π
1296 .
)18103(18
3
2
×××=
π
V
V = 1296
π
cm
3
b)
Donner la valeur approchée du volume de l’aquarium au dixième de litre près.
V
4 071,5 cm
3
V
4,1 L
2)
On remplit cet aquarium à ras bord, puis on verse la totalité de son contenu dans un autre aquarium
parallélépipédique. La base du nouvel aquarium est un rectangle de 15 cm par 20 cm.
Déterminer la hauteur atteinte par l’eau (on arrondira au cm près).
Volume d’u pavé droit :
V = l
×
L
×
h
V = 15
×
20
×
h
D’où 15
×
20
×
h = 1296
π
300h = 1296
π
h = 1296
π
÷ 300
h
14 cm
Rappel :
1 L = 1 dm
3
= 1 000 cm
3
.
Exercice 7 / 7 points
Les gérants d’un centre commercial ont construit un parking souterrain et souhaitent installer un trottoir
roulant pour accéder de ce parking au centre commercial.
Les personnes empruntant ce trottoir roulant ne doivent pas mettre plus de 1 minute pour accéder au centre
commercial.
La situation est présentée par le schéma ci-dessous.
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !