Thermodynamique 1 :
Potentiel chimique
Conseils / Erreurs trop fréquentes
Il y a autant d’états standard que de températures et d’états physiques.
Par exemple, l’état standard du dioxygène gazeux à 298 K est le dioxygène gazeux pur, sous 1 bar et à 298 K.
L’état standard du dioxygène gazeux à 303 K est le dioxygène gazeux pur, sous 1 bar et à 303 K.
De la même façon, on peut définir à 298 K, l’état standard du dioxygène liquide et du dioxygène gazeux, même si
les deux n’existent pas forcément à cette température.
Ainsi, l’état standard de O
2
() à 298 K est du dioxygène liquide pur, sous 1 bar et à 298 K. Cet état est fictif.
En résumé, l’état standard d’un constituant physico-chimique à une température T correspond à ce constituant
pur, sous 1 bar et à la température T.
Attention à ne pas confondre :
o Etat standard d’un constituant physico-chimique
o Etat standard de férence d’un élément chimique.
Pour calculer G ou sa variation ΔG, on utilise la relation d’Euler : G =
« Partiel » signifie relatif à un constituant donné au sein d’un mélange. Une grandeur molaire partielle constitue
donc le moyen de prendre en compte la différence d’environnement d’une molécule dans le mélange et dans le
corps pur.
Ainsi, dans l’éthanol pur, une molécule d’éthanol n’est entourée que de molécules d’éthanol. Dans une solution
aqueuse, suivant la concentration, une molécule d’éthanol a comme voisines des molécules d’eau et d’éthanol.
Les interactions intermoléculaires sont donc différentes : elles varient en intensité ce qui change les propriétés du
mélange par rapport au corps pur.
La pression de vapeur saturante P
A
* est la pression partielle du gaz A dans la phase vapeur en équilibre avec une
phase de A liquide pur. Si le liquide n’est pas pur, alors, dans le cas d’une hypothèse d’idéalité, la pression partielle
de A dans la phase vapeur à l’équilibre est donnée par la loi de Raoult.
Ne pas confondre loi de Dalton et loi de Raoult, même si elles expriment toutes les deux, la pression partielle d’un
constituant gazeux au sein d’une phase vapeur :
o Loi de Dalton : relie la pression partielle P
i
à l’abondance du constituant dans la phase gaz, au moyen de la
fraction molaire en phase vapeur :
 

o Loi de Raoult : relie la pression partielle P
i
à l’abondance du constituant dans la phase liquide, au moyen de
la fraction molaire en phase vapeur :
 
PA*
A(ℓ) pur (xA
= 1)
PA = xA
PA*
A en mélange liquide idéal (xA
)
Arbre logique du chapitre
But
:
D
éterminer si un système
chi
mique
à T et P constantes
évolue
S
i oui, dans quel sens
?
Solution : Recherche d’un potentiel thermo par application des deux
principes de la thermodynamique → introduc/on de l’enthalpie libre G
Problème : Comment tenir compte des propriétés des mélanges et des
changements de composition dans l’expression des fonctions d’état ?
Solution : Introduction des grandeurs molaires partielles.
En particulier, le potentiel chimique μ
i
va permettre de calculer G
Problème : Comment exprimer le potentiel chimique quand on ne connaît
que l’influence (dérivées) de la pression et de la température sur le
potentiel chimique du corps pur ?
Solution
1
:
Définition d’un état
« référence » (état standard) et
intégration des dérivées
Prise en compte de l’influence
de la pression ou de la
température sur le potentiel
chimique du corps pur
Solution 2 : Rajouter un terme
correctif pour rendre compte
de l’écart entre le potentiel
chimique du corps pur et celui
en mélange.
Problème : Les calculs ont été réalisés dans l’hypothèse de mélanges
idéaux. Pourtant, tous les mélanges ne sont pas idéaux !
Solution : Introduction des termes correctifs (coefficients d’activité) pour
rendre compte de l’écart entre potentiel chimique « idéal » et potentiel
chimique réel.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !